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About this book

The C programming language has been around since the early 1970s (see Ritchie
[19938]). Since then, C has been used in an incredible number of applications. Programs
and systems written in C are all around us in personal computers, phones, cameras, set-
top boxes, refrigerators, cars, mainframes, satellites—basically any modern device that
has a programmable interface.

In contrast to the ubiquitous presence of C programs and systems, good knowledge
of and about C is much more scarce. Even experienced C programmers often appear
to be stuck in some degree of self-inflicted ignorance about the modern evolution of
the C language. A likely reason for this is that C is seen as an "easy to learn" language,
allowing a programmer with little experience to quickly write or copy snippets of code
that at least appear to do what it’s supposed to. In a way, C fails to motivate its users to
climb to higher levels of knowledge.

This book is intended to change that general attitude, so it is organized in levels
that reflect familiarity with the C language and programming in general. This structure
may go against some habits of the book’s readers. In particular, it splits some difficult
subjects (such as pointers) across levels so as not to swamp readers too early with the
wrong information. We’ll explain the book’s organization in more detail shortly.

Generally, although many universally applicable ideas will be presented that would
also be valid for other programming languages (such as Java, Python, Ruby, C#, and
C++), the book primarily addresses concepts and practices that are unique to C or are
of particular value when programming in the C language.

C revisions. As the title of this book suggests, today’s C is not the same language
as the one originally designed by its creator. Right from the start, C has been in a
continuous process of adjustment and improvement. Usually, early C is referred to as
K&R C (Kernighan and Ritchie C) after the first book that made the language popu-
lar (Kernighan and Ritchie [1978]). Since then, it has undergone an important stan-
dardization and extension process, now driven by the International Standards Orga-
nization (ISO). This led to the publication of a series of C standards in 1989, 1999,
2011, 2018, and 2024, commonly referred to as C89, C99, C11, C17, and C23. The
C standards committee put a lot of effort into guaranteeing backward compatibility
such that code written for earlier revisions of the language (say, C11), should compile
to a semantically equivalent executable with a compiler that implements a newer revi-
sion. Unfortunately, this backward compatibility has had the unwanted side effect of
not motivating projects that could benefit greatly from the new features to update their
code base. To emphasize this progress of revisions, we indicate which standard revision
introduced newer features.

This edition. This edition presents a considerable rework given the latest revision,
C23, of the C standard. A lot of new material has been added, and many expositions
have been straightened out to reflect the new capabilities of the C programming lan-
guage. So, in this book, we will mainly refer to C23, as defined in C23, but at the time
of this writing, compilers hadn’t yet implemented this standard completely. If you want
to compile the examples in this book, you will need at least a compiler that implements
most of C17. For the novelties that C28 introduces, we provide a compatibility header
and discuss how to possibly generate a suitable C compiler and C library platform on
POSIX systems as a fallback in technical annex 21.4. Beware that this is not meant as
a permanent tool but as only a crutch while platforms adapt.

C and C++. Programming has become a very important cultural and economic ac-
tivity, and C remains an important element in the programming world. As in all human
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activities, progress in C is driven by many factors, including corporate or individual in-
terest, politics, beauty, logic, luck, ignorance, selfishness, ego, sectarianism, and (add
your primary motivation here). Thus, the development of C has not been and cannot
be ideal. It has flaws and artifacts that can only be understood within their historical
and societal context.

An important part of the context in which C developed was the early appearance
of its sister language, C++. One common misconception is that C++ evolved from C by
adding its particular features. Although this is historically correct (C++ evolved from a
very early C), it is not particularly relevant today. In fact, C and C++ separated from a
common ancestor more than 30 years ago and have evolved separately ever since. But
this evolution of the two languages has not taken place in isolation; they have exchanged
and adopted each other’s concepts over the years. Some new features, such as the ad-
dition of atomics and threads, have been designed in close collaboration between the C
and C++ standard committees.

Nevertheless, many differences remain, and generally, all that is said in this book
is about C, not C++. Many of the code examples will not even compile with a C++
compiler. So we should not mix sources of both languages.

Takeaway #1 C and C++ are different: don’t mix them, and don’t mix them up.

Note that when you are working through this book, you will encounter many lines
marked like that one. These takeaways summarize features, rules, recommendations,
and so on. There is a list of these takeaways toward the end of the book, which you
might use as a cheat sheet.

Requirements. To be able to profit from this book, you need to fulfill some mini-
mal requirements. If you are uncertain about any of these, please obtain or learn them
first; otherwise, you might waste a lot of time.

First, you can’t learn a programming language without practicing it, so you must
have a decent programming environment at your disposal (usually on a PC or laptop),
and you must master it to some extent. This environment can be integrated (an IDE)
or a collection of separate utilities. Platforms vary widely in what they offer, so it is
difficult to advise on specifics. On Unix-like environments such as Linux and Apple’s
macOS, you will find editors such as emacs and vim and compilers such as c99, c17,
gcc, and clang.

You must be able to do the following:

(1) Navigate your file system. File systems on computers are usually organized
hierarchically in directories. You must be able to navigate through these to find
and manipulate files.

(2) Edit programming text. This is different from editing a letter in a word-
processing environment. Your environment, editor, or whatever it is called
should have a basic understanding of the programming language C. You will
see that if you open a C file (which usually has the file extension . c). It might
highlight some keywords or help you indent your code according to the nest-
edness of {} brackets.

(8) Execute a program. The programs you will see here are very basic at first
and will not offer you any graphical features. They need to be launched in
the command line. An example of such a program launched that way is the
compiler. On Unix-like environments, the command line is usually called a
shell and is launched in a console or terminal.

(4) Compile programming text. Some environments provide a menu button or
a keyboard shortcut for compilation. An alternative is to launch the com-
piler in the command line of a terminal. This compiler must adhere to recent
standards; don’t waste your time with a compiler that does not conform.
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If you have never programmed before, this book will be tough. Knowing some of
the following will help: Basic, C (historical revisions), C++, Fortran, R, bash, JavaScript,
Java, MATLAB, Perl, Python, Scilab, and so on. But perhaps you have had some other
programming experience, maybe even without noticing. Many technical specifications
actually come in some sort of specialized language that can be helpful as an analogy—
for example, HTML for web pages and LaTeX for document formatting.

You should have an idea of the following concepts, although their precise meanings
may be a bit different in C than in the context where you learned them:

Variables: Named entities that hold values

Conditionals: Doing something (or not) subject to a precise condition

Iteration: Doing something repeatedly for a specified number of times or until a certain
condition is met

Source code. Many of the programming code snippets presented in this book are
publicly available (see https://inria.hal.science/hal-03345464/document).
This allows you to view them in context and to compile and try them out. The archive
also contains a Makefile with a description of the components that are needed to
compile these files. It is centered around Linux or, more generally, POSIX systems,
but it may also help you to find out what you need when you are on a different system.

Exercises and challenges. Throughout this book, you'll see exercises meant to get
you thinking about the concepts being discussed. These are probably best done directly
along with your reading. Then there is another category called “challenges.” These are
generally more demanding. You will need to do some research even to understand what
they are about, and the solutions will not come all by themselves; they will require effort.
They will take more time, sometimes hours or, depending on your degree of satisfaction
with your work, even days. The subjects covered in these challenges are the fruit of my
own personal bias toward “interesting questions” from my personal experience. If you
have other problems or projects in your studies or work that cover the same ground,
they should do equally well. The important aspect is to train yourself by first searching
for help and ideas elsewhere and then to get your hands dirty and get things done. You
will only learn to swim if you jump into the water.

Organization. This book is organized in levels, numbered from 0 to 8. The start-
ing level 0, named Encounter, will summarize the very basics of programming with C.
Its principal role is to remind you of the main concepts we have mentioned and famil-
iarize you with the special vocabulary and viewpoints that C applies.l By the end of it,
even if you don’t have much experience in programming with C, you should be able to
understand the structure of simple C programs and start writing your own.

The Acquaintance level 1 details most principal concepts and features such as con-
trol structures, data types, operators, and functions. It should give you a deeper under-
standing of what is going on when you run your programs. This knowledge should be
sufficient for an introductory course in algorithms and other work at that level, with the
notable caveat that pointers are not yet fully introduced.

The Cognition level 2 goes to the heart of the C language. It fully explains point-
ers, familiarizes you with C’s memory model, and allows you to understand most of C’s
library interface. Completing this level should enable you to write C code profession-
ally; it therefore begins with an essential discussion about the writing and organization
of C programs. I personally would expect anybody who graduated from an engineering
school with a major related to computer science or programming in C to master this
level. Don’t be satisfied with less.

10ne of C’s special viewpoints is that indexing starts at 0 and not at 1 as in Fortran.

%


https://inria.hal.science/hal-03345464/document

vi

The Experience level 3 then goes into detail about specific topics, such as per-
formance, reentrancy, atomicity, threads, and type-generic programming. These are
probably best discovered as you go, which is when you encounter them in the real world.
Nevertheless, as a whole, they are necessary to round off the discussion and to provide
you with full expertise in C. Anybody with some years of professional programming in
C or who heads a software project that uses C as its main programming language should
master this level.

Author. Jens Gustedt completed his studies in mathemat-
ics at the University of Bonn and Berlin Technical University.
His research at that time covered the intersection between dis-
crete mathematics and efficient computation. Since 1998, he
has been working as a senior scientist at the French National In-
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AFNOR (the French standards organization) as an expert on the ISO committee
JTC1/SC22/WG14. He was co-editor for the C standard document C17 and for the
initial phase of C23. He also has a successful blog that deals with programming in C
and related topics (https://gustedt.wordpress.com).
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LEVEL 0

Encounter

Our mascot for this level is the magpie, one of the most intelligent nonhu-
man species on earth. They are capable of elaborate social rituals and usage
of tools.

This first level of the book may be your first encounter with the programming lan-
guage C. It provides you with a rough knowledge of C programs, their purposes, their
structures, and how to use them. It is not meant to give you a complete overview; it
can’t, and it doesn’t even try. On the contrary, it is intended to give you a general idea
of what C is all about, open up questions, and promote ideas and concepts. These then
will be explained in detail throughout the book.



2 0. ENCOUNTER

1. Getting started

This section covers

e Introduction to imperative programming
e Compiling and running code

In this section, I will introduce you to a simple program that contains many of the
constructs of the C language. If you already have programming experience, you may
find some of the discussion feels like needless repetition. If you lack such experience,
you might feel overwhelmed by the stream of new terms and concepts.

In either case, be patient. For those of you with programming or C experience,
it’s very possible that you will encounter subtle details you're not aware of or assump-
tions you have made about the language that are not valid. For those approaching
programming for the first time, be assured that after approximately 10 pages, your un-
derstanding will have increased a lot, and you should have a much clearer idea of what
programming represents.

An important bit of wisdom for programming in general, and for this book in par-
ticular, is summarized in the following quote from the Hitchhiker’s Guide to the Galaxy
by Douglas Adams [1986]:

Takeaway 1 #2  Don’t panic.

It’s not worth it. There are many cross references, links, and bits of side information
in the text, and there is an index at the end. Follow those if you have a question. Or
just take a break.

Programming in C is about having the computer complete some specific tasks. A
C program does that by giving orders, much as we would express such orders in the
imperative tense in many human languages, thus the term imperative programming for
this particular way of organizing computer programs. To get started and see what I
am talking about, consider our first program in listing 1.1, which corresponds to the
getting-started. c source file in the source directory.

1.1. Imperative programming. You probably see that this code is a sort of lan-
guage, containing some weird words like main, include, for, and so on, which are
laid out and colored in a peculiar way and mixed with a lot of strange characters, num-
bers, and text (“Doing some work”) that looks like ordinary English. It is designed to
provide a link between us, the human programmers, and a machine, the computer, so
we can tell it what to do: we give it “orders.”

Takeaway 1.1 #1  C is an imperative programming language.

In this book, we will not only encounter the C programming language but also some
vocabulary from an English dialect, C jargon, the language that helps us to talk about C.
It will not be possible to immediately explain each term the first time it occurs. But I
will explain each one in time, and all of them are indexed so you can easily cheat and
jumpc to more explanatory text, at your own risk.l

As you can probably guess from this first example, such a C program has different
components that form some intermixed layers. Let’s try to understand it from the
inside out. The visible result of running this program is to output five lines of text on
the command terminal of your computer. On my computer, using this program looks
something like this:

ISuch special terms from C jargon are marked with a superscripted C, as shown here.
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1. GETTING STARTED 3

Listing 1.1. The first example of a C program

/+ This may look like nonsense, but really is —*— mode: C —x— =%/
#include <stdlib.h>
#include <stdio.h>

/* The main thing that this program does. x/

int main (int argc, [[maybe unused]] charx argv[argc+l]) {
// Declarations
double A[5] = {
[0] = 9.0,
[1] = 2.9,
[4] = 3.E+25,
[3] = .00007,

}i

// Doing some work
for (size_ t 1 = 0; 1 < 5; ++1i) {
printf ("element %zu_is_%g, \tits_square_is_%$g\n",
il
Alil,
A[i]*A[1]);

return EXIT SUCCESS;

Terminal

> ./getting-started

element 0 is 9, its square is 81
element 1 is 2.9, its square is 8.41
element 2 is O, its square is 0
element 3 is 7e-05, its square is 4.9e-09
element 4 is 3e+25, its square is 9e+50

We can easily identify the parts of the text in getting—started.c that this
program outputs (printsC, in C jargon): the part of line 17 between quotes. The real
action happens between that line and line 20. C calls this a statement®, which is a bit
of a misnomer. Other languages would use the term instruction, which describes the

¢ named print£:

getting-started.c

purpose better. This particular statement is a call’ to a function

printf ("element %zu_is_%g, \tits_square_is_%$g\n",
i/
Alil,
A[i]*A[1]);

Here, the print £ function receives four arguments®, enclosed in a pair of parentheses®,

(... ):
e The funny-looking text (between the quotes) is a string literalC that serves as
aformat® for the output. Within the text are three markers (format specifiers®)
that indicate the positions in the output where numbers are to be inserted.




4 0. ENCOUNTER

These markers start with the percent (%) character. This format also contains
some special escape characters® that start with a backslash: \t and \n.

e After a comma character, we find the one-letter word i. The thing i stands
for will be printed in place of the first format specifier, % zu.

e Another comma separates the next argument, A[i]. The thing this stands
for will be printed in place of the second format specifier, the first $g.

e Last, again separated by a comma, appears A[1] *A[1], corresponding to
the last %g.

We will later explain what all of these arguments mean. Just remember that we identi-
fied the main purpose of the program (to print some lines on the terminal) and learned
it “orders” the print£ function to fulfill that purpose. The rest is some sugar® to
specify which and how many numbers will be printed.

1.2. Compiling and running. As shown in the previous subsection, the program
text expresses what we want our computer to do. As such, it is just another piece of
text that we have written and stored somewhere on our hard disk, but the program text
as such cannot be understood by your computer. There is a special program, called a
compiler, that translates the C text into something that your machine can understand:
the binary code® or executable® . What that translated program looks like and how this
translation is done are much too complicated to cover in this book.g Unfortunately, this
book will not be able to explain most of it; that would require yet another whole book.
However, for the moment, we don’t need to understand more deeply, as we have the
tool that does all the work for us.

Takeaway 1.2 #1  C is a compiled programming language.

The name of the compiler and its command-line arguments depend a lot on the
platform® on which you will be running your program. There is a simple reason for
this: the target binary code is platform dependent®: that is, its form and details depend
on the computer on which you want to run it. A PC has different needs than a phone,
and your refrigerator doesn’t speak the same “language” as your set-top box. In fact,
that’s one of the reasons for C to exist: C provides a level of abstraction for all the
different machine-specific languages (usually referred to as an assembly language®).

Takeaway 1.2 #2 A correct C program is portable between different platforms.

In this book, we will put a lot of effort into writing “correct” C programs that ensure
portability. Unfortunately, there are some platforms that claim to be C but do not con-
form to the latest standards, and some conforming platforms accept incorrect programs
or provide extensions to the C standard that are not widely portable. So, running and
testing a program on a single platform will not always guarantee portability.

It is the job of the compiler to ensure that the little program shown earlier (getting-started. c),
once translated for the appropriate platform, will run correctly on your PC, your phone,
your set-top box, and maybe even your refrigerator.

That said, if you have a POSIX system (such as Linux or macOS), there is a good
chance that programs named c99 or c17 might be present and that it is, in fact, a G
compiler. You could try to compile the example program using the following com-
mand:

2In fact, the translation itself is done in several steps that go from textual replacement to proper com-
pilation and linking. Nevertheless, the tool that bundles all this is traditionally called a compiler and not a
translator, which would be more accurate.
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Terminal

> cl7 -Wall -o getting-started getting-started.c -1m

The compiler should do its job without complaining and output an executable file
called getting-started in your current directory.™ 3! In the example line,

e c17 is the compiler program.

e —Wall tells it to warn us about anything that it finds unusual.

e —0 getting-started tellsit to store the compiler output® in a file named
getting-started.

e getting-started.c names the source file®, which contains the C code
we have written. Note that the . ¢ extension at the end of the filename refers
to the C programming language.

e —1m tells it to add some standard numerical functions if necessary; we will
need those later on.

Now we can execute® our newly created executable® . Type

Terminal

> ./getting-started

and you should see exactly the same output as I showed you earlier. That’s what
portable means: wherever you run that program, its behavior® should be the same.

If you are not lucky and the compilation command didn’t work, you will have to
look up the name of your compiler” in your system documentation. You might even
have to install a compiler if one is not available. iThe names of compilers vary. Here
are some common alternatives that might do the trick:

Terminal

> clang -std=c2x -Wall -1lm -o getting-started getting-started.c

> gcc —-std=c2x -Wall -1m -o getting-started getting-started.c
> icc -std=c2x -Wall -1lm -o getting-started getting-started.c

The option —std=c2x names the standard version “C2x,” which was meant for
C23 before we knew it would be finished in 2028.

Some of these compilers, even if they are present on your computer, might not
compile the program without complaining.[ %!

With the program in listing 1.1, we have been presented with an ideal world: a
program that works and produces the same result on all platforms. Unfortunately, when
programming yourself, very often you will have a program that only partially works
and may produce wrong or unreliable results. Therefore, let’s look at the program in
listing 1.2. It looks quite similar to the previous listing. .

If you run your compiler on this program, it should give you some diagnostic®
information similar to this:

[Exs 3]Try the compilation command in your terminal.
4Inslalling a compiler is necessary if you have a system with a Microsoft operating system. Microsoft’s
native compilers are now catching up with C17, but I don’t know about its plans for C23. Many fea-
tures we discuss in this book might not work. For a discussion on alternative development environments,
see Chris Wellons’ blog entry “Four Ways to Compile C for Windows” (https://nullprogram.com/
blog/2016/06/13/) might still be of interest.
LExs SIS tart writing a text report about your tests with this book. Note down which command worked for you.
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ListinGg 1.2. An example of a C program with flaws

/+ This may look like nonsense, but really is —*— mode: C —x— =%/

/* The main thing that this program does. */
void main () {
// Declarations
int i;
double A[5] = {
9.0,
2.9,
3.E+25,
.00007,
}i

// Doing some work
for (i = 0; i < 5; ++1i) {
printf ("element %d _is, %9, \tits_square_is %g\n",
il
A[i],
A[i]+A[1]);

return 0;

Terminal

> gcc —-std=c2x -Wall -o bad bad.c
bad.c:4:6: warning: return type of 'main' is not 'int' [-Wmain]
4 | void main() {

| ~

bad.c: In function 'main':

bad.c:16:6: warning: implicit declaration of function 'printf' [-Wimpl
16 | printf ("element %d is %g, \tits square is %g\n", /*Q@\labe

bad.c:1:1: note: include '<stdio.h>' or provide a declaration of 'prin
+++ [+#include <stdio.h>
1 | /* This may look like nonsense, but really is —-*— mode: C —x*-—
bad.c:16:6: warning: incompatible implicit declaration of built-in fun
16 | printf ("element %d is %g, \tits square is %g\n", /x@\labe
bad.c:16:6: note: include '<stdio.h>' or provide a declaration of 'pri
bad.c:22:10: warning: 'return' with a value, in function returning voi
22 | return 0; /*@\labe
| ~
bad.c:4:6: note: declared here
4 | void main() {

| N

it-function-decl

printf-start-bad

fon 'printf' [

printf-start-bad

fl
[-Wreturn—-type]

ain-return-ba
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Here we had a lot of long “warning” lines that are too long to fit on a terminal
screen. In the end, the compiler produced an executable. Unfortunately, the output
when we run the program is different. This is a sign that we have to be careful and pay
attention to details.

Clang is even more picky than GCC and gives us similar diagnostics:

Terminal

> clang —-std=c2x -Wall -o bad bad.c

bad.c:4:1: error: 'main' must return 'int'

4 | void main() {

| int

| A

bad.c:22:3: error: void function 'main' should not return a value [-Wr
22 | return 0; /*@\labe

| A

3 errors generated.

Notice that Clang, unlike GCC, did not produce an executable. It considers all
three detected problems to be fatal errors and refuses to carry on. Consider this to be
a feature.

Both gave us three diagnostics: they expect a different return type for main, they
expected us to have a line such as line 8 from listing 1.1 to specify where the print £
function comes from, and they detect that the return in line 22 is not correct for the
specification of main as it is given.

Depending on your platform, you can force your compiler to reject programs that
produce such diagnostics. For GCC, such a command-line option would be -Werror,
and then it would behave as we saw with Clang.

So, the two differences between listings 1.1 and 1.2 turned a good, standards-
conforming, portable program into a bad one. We also saw that the compiler was there
to help us. It nailed the problem down to the lines in the program that cause trouble.
With a bit of experience, you will be able to understand what it is telling you.@ [Exs 7]

Takeaway 1.2 #3 A C program should compile cleanly without warnings.

[Exs 6] orrect listing 1.2 step by step. Start from the first diagnostic line, fix the code mentioned there, re-
compile, and so on until you have a flawless program.

[Exs 7IThere is a third difference between the two programs that was not yet mentioned. Find it.

bad.c:16:6: error: call to undeclared library function 'printf' with t g

'int (const ch

16 | printf ("element %d is %g, \tits square is %g\n", /*@\labe printf-start-badly}«*/

bad.c:16:6: note: include the header <stdio.h> or explicitly provide a pclaration for '

rn-type]

ain-return-badly}*/
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Summary

C is designed to give orders to computers. Therefore, it mediates between us
(the programmers) and computers.

C must be compiled to be executed. The compiler provides the translation
between the language that we understand (C) and the specific needs of the
particular platform.

C gives a level of abstraction that provides portability. One C program can
be used on many different computer architectures.

The C compiler is there to help you. If it warns you about something in your
program, listen to it.
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2. The principal structure of a program

This section covers

e C grammar

Declaring identifiers

Defining objects

Instructing the compiler with statements

Compared to our little examples in the previous section, real programs will be more
complicated and contain additional constructs, but their structure will be very similar.
Listing 1.1 already has most of the structural elements of a C program.

There are two categories of aspects to consider in a C program: syntactical aspects
(how do we specify the program so the compiler understands it?) and semantic aspects
(what do we specify so the program does what we want it to do?). In the following
subsections, we will introduce the syntactical aspects (grammar) and three different
semantic aspects: declarative parts (what things are), definitions of objects (where things
are), and statements (what things are supposed to do).

2.1. Grammar. Looking at its overall structure, we can see that a C program is
composed of different types of text elements that are assembled in a kind of grammar.
These elements are as follows:

Special words: In listing 1.1, we used the following special WOI‘dS:E

#include int maybe_unused char void double for return

In program text in this book, most of them will be printed in black bold. These
special words represent concepts and features that the C language imposes and that
cannot be changed.

Punctuation: C uses several types of punctuation to structure the program text.

e There are six kinds of brackets: {...}, (...), [...1, [[...11, /*...%/, and
<...>. Brackets group certain parts of the program together and should always
come in pairs. Fortunately, the <...> brackets are rare in C and are only used
as shown in our example, on the same logical line of text. The other five are not
limited to a single line; their contents might span several lines, as they did when
we used print £ earlier.

e There are two different separators or terminators: comma and semicolon. When
we used print £, commas separated the four arguments of that function. On
line 12, we saw that a comma also can follow the last element of a list of ele-

ments:
getting-started.c

12 ‘ [3] = .00007,

One of the difficulties for newcomers to C is that the same punctuation characters
are used to express different concepts. For example, the pairs {} and [] are each
used for three different purposes in listing 1.1.1Fxs 9]

Takeaway 2.1 #1  Punctuation characters can be used for several different purposes.

Comments: The construct /* .../ that we saw earlier tells the compiler that every-
thing inside it is a comment; see, for example, line 5:

8InC jargon, these are directivesC , keywordsC, attributesC, and reserved® identifiers.
[Exs ind the different uses of these two sets of brackets.
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getting-started.c

[ ]
5 ‘/* The main thing that this program does. x/ ‘

Comments are ignored by the compiler, so it is the perfect place to ex-
plain and document your code. Such in-place documentation can (and should)
greatly improve the readability and comprehensibility of your code. Another
form of comment is the so-called C++-style comment, as on line 15. These
are marked with / /. C++-style comments extend from the // to the end of
the line.

Literals: Our program contains several items that refer to fixed values that are part of
the program: 0,1, 3,4,5,9.0,2.9,3.E+25, .00007, and
"element %zu is_%g, \tits_square_is_%g\n". These are called
literals.

Identifiers: Identifiers are “names” that we (or the C standard) give to certain enti-
ties in the program. Here we have A, i, main, printf, size_t, and
EXIT_SUCCESS. Identifiers can play different roles in a program. Among
other things, they may refer to

e Dataobjects® (such as A and 1). These are also referred to as variables® .

e Type® aliases, such as size_t, that specify the “kind” of a new object
(here, of 1). Observe the trailing _t in the name. This naming conven-
tion is used by the C standard to remind you that the identifier refers to
a type.

e Functions, such as main and printf£.

e Constants, such as EXIT_ SUCCESS.

Functions: Two of the identifiers refer to functions: main and print£. As we have
already seen, printf£ is used by the program to produce some output. The
functionmain, in turn, is defined” : that s, its declaration” int main (void)
is followed by a function body® (indicated by { ...} of a compound state-
ment) that describes what that function is supposed to do. In our example,
this function definition® goes from line 6 to 24. main has a special role in
C programs, as we will encounter: it must always be present since it is the
starting point of the program’s execution.

Operators: Of the numerous C operators, our program only uses a few:

o = for initialization® and assignment®

e < for comparison

e ++ to increment a variable (to increase its value by 1)
e x to multiply two values

Attributes: Attributes such as [ [maybe_unused]] are placed into double square
brackets as shown and provide some supplemental information to the prin-
ciple structure of the program.©?3

Just as in natural languages, the lexical elements and the grammar of C programs
that we have seen here have to be distinguished from the actual meaning these con-
structs convey. In contrast to natural languages, this meaning is rigidly specified and
usually leaves no room for ambiguity. In the following subsections, we will dig into
the three main semantic categories that C distinguishes: declarations, definitions, and
statements.

2.2. Declarations. Before we may use a particular identifier in a program, we have
to give the compiler a declaration® that specifies what that identifier is supposed to
represent. In this way, identifiers differ from keywords: keywords are predefined by the
language and must not be declared or redefined.

C23 This feature is new in (€28, so your compiler might not yet implement it.



2. THE PRINCIPAL STRUCTURE OF A PROGRAM 11

Takeaway 2.2 #1  All identifiers in a program have to be declared.

Several of the identifiers we use are effectively declared in our program: main,
argc, argv, A, and i. Later on, we will see where the other identifiers (print£,
size_t, and EXIT_SUCCESS) come from. We already mentioned the declaration
of the main function. All five declarations, in isolation as “declarations only,” look like

this:

int main (int, charx*[]);

int argc;

[ [maybe_unused]] charx argv[];
double A[5];

size t i;

These five declarations follow a pattern. Each has an identifier (main, argc, argv,
A, or i), and a specification of certain properties that are associated with that identifier:

o iisof type’ size_t.

argc is of type int.

main is additionally followed by parentheses, ( ...), and thus declares a function of
type int.
A is followed by brackets, [ ... 1, and thus declares an array®. An array is an aggre-

gate of several items of the same type; here it consists of 5 items of type double.
These 5 items are ordered and can be referred to by numbers, called indicesC, from
0 to 4.

argv is also followed by brackets, so it also has the properties of an array. The at-
tribute [ [maybe_unused] ] indicates that it is possibly unused, and indeed, we
don’t see the word argv elsewhere in this program code. There are argc+1 ele-
ments of a type denoted by charx.

Each of these declarations starts with a type” (here, int, charx, double, and size_t).
We will see later what that represents. For the moment, it is sufficient to know that it
specifies that four of the identifiers (main, argc, A, and i), when used in the context
of a statement, will provide some sort of numbers.

For the other, argv, the » at the end of char« indicates that it is a pointer’;
pointers, though a principal feature of the C language, will only appear much later in

this book.

The declarations of argc, i and A declare variables®, which are named items that
allow us to store valuesC. They are best visualized as a kind of box that may contain a
“something” of a particular type:

size_t 2?7

-

0] [1] 2] [3] 4]
A ‘ double 27 I double 27 double 27 I double 27 I double 27




<stdio.h>

<stdlib.h>
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Conceptually, it is important to distinguish the box itself (the object), the specification
(its type), the box contents (its value), and the name or label that is written on the box
(the identifier). In such diagrams, we put 2 2 if we don’t know the actual value of an item.

For the other three identifiers, print £, size_t, and EXIT SUCCESS, we don’t
see any declarations. They are, in fact, predeclared identifiers. However, as we saw
when we tried to compile listing 1.2, the information about these identifiers doesn’t
come out of nowhere. We have to tell the compiler where it can obtain informa-
tion about them. This is done right at the start of the program, in lines 2 and 3:
printf is provided by <stdio.h>, whereas size_t and EXIT_SUCCESS come
from <stdlib.h>. The real declarations of these identifiers are specified in .h files
with these names somewhere on your computer. They could be something like

int printf (char const format[static 1], ...);
typedef unsigned long size_t;
#define EXIT_ SUCCESS 0

Because the specifics of these predeclared features are of minor importance, this
information is normally hidden from you in include files® or header filesC . 1f you need
to know their semantics, it is usually a bad idea to look them up in the corresponding
files, as these tend to be barely readable. Instead, search in the documentation that
comes with your platform. For the brave, I always recommend a look into the current
C standard, as that is where they all come from. For the less courageous, the following
commands may help:

Terminal

> apropos printf
> man printf

> man 3 printf

A declaration only describes a feature but does not create it, so repeating a decla-
ration does not do much harm but adds redundancy.

Takeaway 2.2 #2  Identifiers may have several consistent declarations.

Clearly, it would become really confusing (for us and the compiler) if there were
several contradicting declarations for the same identifier in the same part of the pro-
gram, so generally this is not allowed. C is quite specific about what “the same part
of the program” is supposed to mean: the scope® is a part of the program where an
identifier is visible® .

Takeaway 2.2 #8  Declarations are bound to the scope in which they appear.

The scopes of identifiers are unambiguously described by the grammar. In list-
ing 1.1, we have declarations in different scopes:

e A is visible inside the definition of the function main, starting at its declara-
tion on line 8 and ending with the closing } on line 24 of the innermost {
...} compound statement that contains that declaration.

e i has more restricted visibility. It is bound to the £or construct in which it is
declared. Its visibility reaches from that declaration on line 16 to the end of
the { ...} compound statement that is associated with the for on line 21.

e main is not enclosed in any other compound statement, so it is visible from
its declaration onward until the end of the file.

e argc and argv are not enclosed inside { ...}, but they are inside the (
...) that marked main as being a function. They are the parameters® of the
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A double 9.0 double 2.9 double 0.0 double 0.000’07 double 3.0E+25
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function, and their scope starts at their respective declaration and then spans
the whole { ...} body of their function (here, of main).

The first two and the last types of scope are called block scope® with a block® being a
structure in the grammar that encapsulates such declarations. A function like main,
together with its parameter list (enclosed in () ) and the whole body (enclosed in {}),
forms a single block of its own. The £or construct forms a primary block®, and the
loop body (usually also given with surrounding { ... }) forms a secondary block®. You
can see that blocks are nested’: the block of main contains the primary block of the
for loop, which, in turn, contains its secondary block.

The third type of scope, as used for the name main itself, which is not inside a (

.) or { ...} pair, is called file scope® . Identifiers in file scope are often referred to as

globals® .

So, our seemingly simple program has four nested levels of scopes: file scope and
three nested blocks.

2.3. Definitions. Generally, declarations only specify the kind of object an iden-
tifier refers to, not what the concrete value of an identifier is, nor where the object it
refers to can be found. This important role is filled by a definition® .

Takeaway 2.3 #1  Declarations specify identifiers, whereas definitions specify objects.

We will later see that things are a little more complicated in real life, but for now we
can make the simplification that we will always initialize our variables. An initialization
is a grammatical construct that augments a declaration and provides an initial value for
the object. For instance,

|
‘size_t i = 0;
!

is a declaration of i such that the initial value is 0.

In C, such a declaration with an initializer also defines the object with the corre-
sponding name: that is, it instructs the compiler to provide storage in which the value
of the variable can be stored.

Takeaway 2.3 #2  An object is defined at the same time it is initialized.

Our box visualization can now be completed with a value, 0 in this example:

:

A is a bit more complex because it has several components:

getting-started.c

double A[5] = {
[0] = 9.0,
[1] = 2.9,
[4] = 3.E+25,
[3] = .00007,
}i

This initializes the 5 items in A to the values 9.0, 2.9, 0.0, 0.000’ 07, and
3.0E+25, in that order:

[0} (1] [2] [3]

[4]




16
17
18
19
20
21
22
23

14 0. ENCOUNTER

The form of the initializer we see here is called designated®: a pair of brackets with
an integer designates which item of the array is initialized with the corresponding value.
For example, [4] = 3.E+25 sets the last item of the array A to the value 3.E+25. As
a special rule, any position that is not listed in the initializer is set to 0. In our example,
the missing [2] is filled with 0. O.E

Takeaway 2.3 #3  Missing elements in initializers default to 0.

You might have noticed that array positions, indices®, start with 0 for the first
element, not 1. Think of an array position as the distance of the corresponding array
element from the start of the array.

Takeaway 2.3 #4  For an array with n elements, the first element has index 0, and the last
has index n—1.

For a function, we have a definition (as opposed to only a declaration) if its decla-
ration is followed by braces { ...} containing the code of the function:

int main(int argc, [[maybe_ unused]] charx argv[argc+l]) {

}

In our examples so far, we have seen names for two different features: objects® (i
and A) and functions® (main and print£). In contrast to object or function declara-
tions, where several are allowed for the same identifier, definitions of objects or func-
tions must be unique. That is, for a C program to be operational, any object or function
used must have a definition (otherwise, the execution would not know where to look for
them), and there must be no more than one definition (otherwise, the execution could
become inconsistent).

Takeaway 2.8 #5  Each object or function must have exactly one definition.

2.4. Statements. The second part of the main function consists primarily of state-
ments. Statements are instructions that tell the compiler what to do with identifiers that

have been declared so far. We have

for (size t i = 0; i < 5; ++1) {
printf ("element %zu _is_%g, . \tits_square_is_%g\n",
i,
A[i],
A[i]*A[1]);

return EXIT SUCCESS;

We have already discussed the lines that correspond to the call to print£. There
are also other types of statements: for and return and an increment operation indi-
cated by the operator® ++. In the following subsection, we will go a bit into the details
of three categories of statements: iterations (do something several times), function calls
(delegate execution somewhere else), and function returns (resume execution from where
a function was called).

e will see later how these number literals with dots (.) and exponents (E+25) work.
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2.4.1. lteration. The for statement tells the compiler that the program should
execute the printf line a number of times. This is the simplest form of domain
iteration® that C has to offer. It has four different parts. The secondary block (here, a
compound statement marked by { ... }) that follows the for (...) is the code that
is to be repeated; it is also called the loop body®. The other three parts are those inside
the (...) part, divided by semicolons:

(1) The declaration, definition, and initialization of the loop variable® i, which
we already discussed. This initialization is executed once before any of the
rest of the entire for statement.

(2) Aloop condition®, i < 5 specifies how long the £or iteration should con-
tinue. This tells the compiler to continue iterating as long as i is strictly less
than 5. The loop condition is checked before each execution of the loop
body.

(3) Another statement, ++1, is executed after each iteration. In this case, it in-
creases the value of i by 1 each time.

If we put all of these parts together, we ask the program to perform the code in the
secondary block five times, setting the value of i to 0, 1, 2, 3, and 4, respectively, in
each iteration. The fact that we can identify each iteration with a specific value for i
makes this an iteration over the domain® 0, ..., 4. There is more than one way to do
this in C, but for is the easiest, cleanest, and best tool for the task.

Takeaway 2.4.1 #1  Domain iterations should be coded with a for statement.

A for statement can be written in several other ways. Often, people place the def-
inition of the loop variable somewhere before the £or or even reuse the same variable
for several loops. Don’t do that: to help an occasional reader and the compiler under-
stand your code, it is important to know that this variable has the special meaning of an
iteration counter for that given £or loop.

Takeaway 2.4.1 #2  The loop variable should be defined in the initial part of a for.

2.4.2. Function calls. Function calls are special statements that suspend the execu-
tion of the current function (at the beginning, this is usually main) and then hand over

control to the named function. In our example,
getting-started.c

printf ("element %zu is_%g,
il
Afi],
A[i]xA[i]);

\tits,_square is_%g\n",

[

the called function is print£. A function call usually provides more than just
the name of the function; it also provides arguments. Here, these are the long chain
of characters, i, A[i], and A[i]*A[i]. The values of these arguments are passed
over to the function. In this case, these values are the information that is printed by
print£. The emphasis here is on value: although i is an argument, print £ will never
be able to change 1i itself. Such a mechanism is called call by value. Other programming
languages also have call by reference, a mechanism where the called function can change
the value of a variable. C does not implement pass by reference; instead, it has another
mechanism to pass the control of a variable to another function: by taking addresses
and transmitting pointers. We will see this mechanism much later.
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2.4.3. Function return. The last statement in main is a return. It tells the main
function to return to the statement that it was called from once it’s done. Here, since
main has int in its declaration, a return must send back a value of type int to the
calling statement. In this case, that value is EXIT_SUCCESS.

Even though we can’t see its definition, the print £ function must contain a similar
return statement. At the point where we call the function on line 17, the execution
of the statements in main is temporarily suspended. The execution continues of the
print£ function until a return is encountered. After the return from print£, the
execution of the statements in main continues from where it stopped.

/ int printf(char const fmt[], ...) {

int main(int argc, [[maybe upfsed]] charf argv[argc+1]) {
/ // Declarations
double A[5] = {

& [0] = 9.0,
[1] = 2.9,
[4] = 8.E+25,
[8] = .00007,

|5

Cajy

// Doing’some work
for (si;ze_t i=0; i< 5; ++i) {

printf("element_%zu_is_%g, _\tits_sqgpare_is_%g\n",

gin () ;

Areaqy O

Process startup

Afi],
Ali]=a[i])

>
<y

}

/?%
return EXIT SUCCESS; 7

}

Progam code

return something;

Ficure 2.1. Execution of a small program

Figure 2.1 shows a schematic view of the execution of our little program: its control
Jflow. First, a process-startup routine (on the left) provided by our platform calls the
user-provided function main (middle). That, in turn, calls print£, a function that is
part of the C library® (on the right). Once a return is encountered there, control
returns back to main, and when we reach the return in main, it passes back to the
startup routine. The latter transfer of control, from a programmer’s point of view, is
the end of the program’s execution.
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Summary

C distinguishes the lexical structure (the punctuators, identifiers, and num-
bers), the grammatical structure (syntax), and the semantics (meaning) of
programs.

All identifiers (names) must be declared so we know the properties of the
concept they represent.

All objects (things that we deal with) and functions (methods that we use to
deal with things) must be defined; that is, we must specify how and where
they come to be.

Statements indicate how things are going to be done: iterations (for) repeat
variations of certain tasks, function calls (print£ (.. .)) delegate a task to
a function, and function returns (return something;) go back where we
came from.






LEVEL 1

Acquaintance

Our mascot for this level, the common raven, is a very sociable corvid and
known for its problem-solving capacity. Ravens organize in teams and
have been observed playing even as adulis.

This level will acquaint you with the C programming language; that is, it will pro-
vide you with enough knowledge to write and use good C programs. “Good” here
refers to a modern understanding of the language, avoiding most of the pitfalls of early
dialects of C and offering you some constructs that were not present before and that
are portable across the vast majority of modern computer architectures, from your cell
phone to a mainframe computer. Having worked through these sections, you should
be able to write short code for everyday needs that is not extremely sophisticated but
useful and portable.
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Buckle up

In many ways, C is a permissive language; programmers are allowed to shoot them-
selves in the foot or other body parts if they choose to, and C will make no effort to stop
them. Therefore, just for the moment, we will introduce some restrictions. We'll try to
avoid handing out guns in this level and place the key to the gun safe out of your reach
for the moment, marking its location with big and visible exclamation marks.

The most dangerous constructs in C are the so-called casts®, so we'll skip them at
this level. However, there are many other pitfalls that are less easy to avoid. We will
approach some of them in a way that might look unfamiliar to you, in particular, if
you learned your C basics in the last millennium or if you were introduced to C on a
platform that wasn’t upgraded to current ISO C for years.

Experienced C programmers: If you already have some experience with C program-
ming, what follows may take some getting used to or even provoke allergic
reactions. If you happen to break out in hives when you read some of the
code here, take a deep breath and try to relax, but please do not skip these
pages.

Inexperienced C programmers: If you are not an experienced C programmer, much
of the following discussion may be a bit over your head; for example, we may
use terminology that you have not yet even heard of. If so, this is a digression
for you, and you may skip to the start of section 3 and come back later when
you feel a bit more comfortable. But be sure to do so before the end of this
level.

Some of “getting used to” our approach on this level may concern the emphasis and
ordering in which we present the material:

e We will focus primarily on the unsigned® versions of integer types.

e We will introduce pointers in steps: first, in disguise as parameters to func-
tions (section 6.1.4), then with their state (being valid or not, section 6.2), and
then, on the next level, (section 11), using their entire potential.

o We will focus on the use of arrays whenever possible instead.

You might also be surprised by some style considerations that we will discuss in the
following points. On the next level, we will dedicate an entire section (section 9) to
these questions, so please be patient and accept them for the moment as they are.

: We bind type modifiers, qualifiers, and attributes to the left. We want to separate
identifiers visually from their type. So we will typically write things as

ichar* name;
!

where char~ is the type and name is the identifier. We also apply the left-binding rule
to qualifiers or attributes and write

|
‘char const* const path_name[[deprecated]];
! |

Here the first const qualifies the char to its left, the  makes it to a pointer, and
the second const again qualifies what is to its left. The attribute [ [deprecated] ]
clearly attaches to the identifier path_name.

(1) We do not use continued declarations.: They obfuscate the bindings of type declara-
tors. For example,

|
‘unsigned constxconst a, b;
!
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Here, b has type unsigned const; that is, the first const goes to the type, and
the second const only goes to the declaration of a. Such rules are highly confusing,
and you have more important things to learn.

(2) We use array notation for pointer parameters.: We do so wherever these assume
that the pointer can’t be null. Some examples are as follows:

/+ These emphasize that the arguments cannot be null. x/
size_t strlen(char const string[static 1]);

int main (int argc, charx argv[argc+l]);

/+ Compatible declarations for the same functions. =/
size_t strlen(const char xstring);

int main (int argc, char xxargv);

The first example stresses the fact that st rlen must receive a valid (non-null) pointer
and will access at least one element of string. The second summarizes the fact that
main receives an array of argc+1 pointers to char: referring to the program name,
to argc—1 program arguments, and to one null pointer that terminates the array.

The second set of declarations only adds additional equivalent declarations for fea-
tures that are already known to the compiler. Because these are declarations and not
definitions, such a redeclaration is allowed, but it doesn’t add new information in this
case.

(8) We use function notation for function pointer parameters.: Along the same lines,
we do so whenever we know that a function pointer can’t be null:

/+ This emphasizes that the "~ “handler’’ argument cannot be null. x/
int atexit (void handler (void)) ;
/+ Compatible declaration for the same function. */

int atexit (void (xhandler) (void)) ;

Here, the first declaration of atexit emphasizes that, semantically, it receives a func-
tion named handler as an argument and that a null function pointer is not allowed.
Technically, the function parameter handler is “rewritten” to a function pointer, much
as array parameters are rewritten to object pointers, but this is of minor interest for a
description of the functionality.

Note, again, that the previous code is valid as it stands and that the second decla-
ration just adds an equivalent declaration for atexit.

(4) We define variables as close to their first use as possible.: Lack of variable initial-
ization, especially for pointers, is one of the major pitfalls for novice C programmers.
This is why we should, whenever possible, combine the declaration of a variable with
the first assignment to it. The tool that C gives us for this purpose is the definition: a
declaration together with an initialization. This gives a name to a value and introduces
this name at the first place where it is used.

This is particularly convenient for for loops. The iterator variable of one loop
is semantically a different object from that in another loop, so we declare the variable
within the £or to ensure it stays within the loop’s primary block.

(5) We use prefix notation for code blocks.: To be able to read a code block, it is im-
portant to capture two things about it easily: its purpose and its extent. Therefore,
e All { are prefixed on the same line with the statement or declaration that introduces
them.
e The code inside is indented by one level.
e The terminating } starts a new line on the same level as the statement that intro-
duced the block.

o Block statements that have a continuation after the } continue on the same line.

See the following code snippet as an example.
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int main(int argc, charx argv[argc+l]) {
puts ("Hello_world!");
if (argc > 1) {
while (true) {
puts ("some,_programs_never_stop");
}
} else {
do {
puts ("but _this_one_does");
} while (false);
}
return EXIT_SUCCESS;

(6) We use digit separators for numbers.: The human eye is not very good at perceiv-
ing the magnitude of numbers that have many digits. In running text, we therefore use
a comma as a thousands separator for large decimal numbers, and we even extend this
form of notation to digits after the period, as in, for example, 10,035.677,789. A
notable exception from this rule is years, where we do not apply a thousands separator.
Since C23, there is also a digit separator for number literals, namely a ’ that appears
directly between two consecutive digits, such as in 107 035.677’ 789. We use that
for all number literals by grouping together three decimal digits (for thousands), four
hexadecimal digits (for double bytes), and eight binary digits (for the bits in a byte).

22
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3. Everything is about control

This section covers

e Conditional execution with i £
e Iterating over domains
e Making multiple selections

In our introductory example, listing 1.1, we saw two different constructs that allowed us
to control the flow of a program’s execution: functions and the for iteration. Functions
are a way to transfer control unconditionally. The call transfers control unconditionally
to the function, and a return statement unconditionally transfers it back to the caller.
We will come back to functions in section 7.

The for statement is different in that it has a controlling condition (i < 5 in the
example) that regulates if and, if so, when the secondary block ({ print£(...) })
is executed. C has five conditional control statements: i £, for, do, while, and switch.
We will look at these statements in this section: i £ introduces a conditional execution de-
pending on a Boolean expression; £or, do, and while are different forms of iterations;
and switch is a multiple selection based on an integer value.

C has some other conditionals that we will discuss later: the ternary operator®,
denoted by an expression in the form cond ? A : B(section 4.5); the compile-time
preprocessor conditionals #if, #ifdef, #ifndef, #elif, #elifdef, #elifndef,
#else, #endif (section 8.1.5); and type generic expressions denoted with the key-
word _Generic (section 18).

3.1. Conditional execution. The first construct that we will look at is specified by
the keyword i£. It looks like this:

if (1 > 25) {
i =1i - 25;
}

Here we compare i against the value 25. If it is larger than 25, J is set to the value
i - 25. Inthe example, i > 25 is called the controlling expression®, and the part
in{ ... }iscalled the secondary blockC .

On the surface, this form of an i £ statement resembles the £or statement that we
already encountered. But it works differently than that: there is only one part inside
the parentheses, and that determines whether the secondary block is run once or not at
all.

There is a more general form of the 1 £ construct:

if (i > 25) {
j =1 - 25;

} else {
=1

}

It has another secondary block that is executed if the controlling condition is not
fulfilled. Syntactically, this is done by introducing another keyword, else, which sep-
arates the two secondary blocks.

The if (...) else ... isa selection statement®. It selects one of the

two possible code pathsC© according to the contents of (

). The general form is

if (condition) secondary-block0
else secondary-blockl
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The possibilities for condit ion (the controlling expression) are numerous. They
can range from simple comparisons, as in this example, to very complex nested expres-
sions. We will present all the primitives that can be used in section 4.4.2.

The simplest of such condition specifications in an i £ statement can be seen in
the following example, in a variation of the for loop from listing 1.1:

for (size .t i = 0; i < 5; ++1i) {
if (1) {
printf ("element %zu _is_%g, \tits_square_is_%g\n",
il
Af[i],
A[i]+A[i]);

}

Here, the condition that determines whether print£ is executed is just i: a nu-
merical value by itself can be interpreted as a condition. The text will only be printed
when the value of i is not 0.[Fxs 11

There are two simple rules for the evaluation of a numerical condition:

Takeaway 3.1 #1  The value 0 represents logical false.

Takeaway 3.1 #2  Any value different from 0 represents logical true.

The operators == and ! = allow us to test for equality and inequality, respectively.
a == bistrueif the value of a is equal to the value of b, and false otherwise; a !'= bis
false if a is equal to b, and true otherwise. Knowing how numerical values are evaluated
as conditions, we can avoid redundancy. For example, we can rewrite

if (1 != 0) |
}

as

if (1) |

}

Which of these two versions is more readable is a question of coding style” and can be
subject to fruitless debates. While the first might be easier for occasional readers of C
code to read, the latter is often preferred in projects that assume some knowledge about
C’s type system.

The type bool should be used to store truth values. Its values are false and
true. Technically, false is just a value 0 of type bool and true the value 1. It’s
important to use £alse and t rue (and not the numbers) to emphasize that a value is to
be interpreted as a condition. We will learn more about the bool type in section 5.7 4.
Note that before C28, to use bool and its literals false and true, you had to use the
<stdbool.h> header. This is now obsolete, and you should only use it if you suspect
that your code may be compiled on an older platform.

Redundant comparisons quickly become unreadable and clutter your code. If you
have a conditional that depends on a truth value, use that truth value directly as the
condition. Again, we can avoid redundancy by rewriting something like

| bool b= ...;

[Exs 1A dd the i £ (i) condition to the program and compare the output to the previous.
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as

bool b = ...;

if (b) {

Takeaway 3.1 #3 Don’t compare to 0, false, or true.
Using either the truth value directly (such as 1 above) or the negation (denoted as

1 in C) makes your code clearer and illustrates one of the basic concepts of the C
language.

Takeaway 3.1 #4  All scalars have a truth value.
Here, scalar® types include all the numerical types such as size_t, bool, and

int that we already encountered and pointer® types; see table 3.1 for the types that
are frequently used in this book. We will come back to them in section 6.2.

TaBLE 8.1. Scalar types used in this book

Level | Name Other | Category | Where printf

0 size t Unsigned | <stddef.h> "ezu" "Szx"

0 double Floating Built in "ge" "SE" "gg" "a"
0 signed int Signed Built in "egn

0 unsigned Unsigned | Built in "Eh" "So" "su" "ex"
0 bool _Bool | Unsigned | Builtin (since C23) | "$d" as0or 1

1 ptrdiff t Signed <stddef.h> "std"

1 char const String Built in "y

1 char Character | Built in "gc"

1 voidx Pointer Built in "sp"

2 unsigned char Unsigned | Built in "$hhu" "$02hhx"

3.2. Iterations. Previously, we encountered the for statement to iterate over a
domain. In our introductory example, it declared a variable i that was set to the values
0, 1, 2, 3, and 4. The general form of this statement is

|
‘ for (clausel; condition2; expression3) secondary-block
!

This statement is actually quite generic. Usually, clausel is an assignment ex-
pression or a variable definition. It serves to state an initial value for the iteration do-
main. condition? tests whether the iteration should continue. Then, expression3
updates the iteration variable used in clausel. It is performed at the end of each it-
eration. Here’s some advice:

e Because we want iteration variables to be defined narrowly in the context for
a for loop (¢f. takeaway 2.4.1 #2), clausel should, in most cases, be a
variable definition.

e Because for is relatively complex with its four different parts and not easy to
capture visually, the secondary block should usually be a compound statement
indicated by { ... }.

Let’s see some more examples:
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for (size t i = 10; i; —--1i) {
something (i) ;

}

for (size_t i = 0, stop = upper_bound(); i < stop; ++1i) {
something else (i) ;

}

for (size_ t i = 9; 1 <= 9; —--1i) {
something _else (i) ;

}

The first £or counts i down from 10 to 1, inclusive. The condition is again just
the evaluation of the variable i; no redundant test against value 0 is required. When i
becomes 0, it will evaluate to false, and the loop will stop. The second £for declares
two variables, i and stop. As before, i is the loop variable, st op is what we compare
against in the condition, and when i becomes greater than or equal to stop, the loop
terminates.

The third £or looks as though it would go on [orever, but it actually counts down
from 9 to 0. In fact, in the next section, we will see that “sizes” in C (numbers that have
type size_t) are never negative. s 2l

Observe that all three for statements declare variables named i. These three
variables with the same name happily live side by side, as long as their scopes don’t
overlap.

There are two more iterative statements in C, while and do:

while (condition) secondary-block
do secondary-block while (condition);

The following example shows a typical use of while. It implements the Heron
approximation to compute the multiplicative inverse % of a number z:

#include <tgmath.h>
constexpr double ¢ = 1E-9; // Desired precision

double const a = 34.0;

double x = 0.5;

while (fabs (1.0 - axx) >= ¢g) { // Iterates until close
x *= (2.0 — a*x); // Heron approximation

}

It iterates as long as the given condition evaluates true, namely, as long as the ab-
solute value of the difference between 1. 0 and the computed product is smaller than a
named constant called &, which represents the desired minimum precision of the com-
putation.ﬁ The do loop is very similar, except that it checks the condition after the
secondary block:

do { // Iterates
x *= (2.0 - ax*x); // Heron approximation
} while (fabs (1.0 - ax*x) >= g); // Iterates until close

This means if the condition immediately evaluates to false, a while loop will not
run its secondary block at all, but the do loop will unconditionally run its block at least
once before ever looking at the condition. As with the £or statement, with do and
while it is advisable to use the { ... } variants. There is also a subtle syntactical
difference between the two: do always needs a semicolon afterwhile (condition)

[Exs 2]Try to imagine what happens when i has value 0 and is decremented by means of the operator ——.
3We will see the details of C28’s constexpr construct in section 5.6.5.
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to terminate the statement. Later, we will see that this is a syntactic feature that turns
out to be quite useful in the context of multiple nested statements; see section 10.2.1.
All three iteration statements become even more flexible with break and cont inue
statements. A break statement stops the loop without re-evaluating the termination
condition or executing the part of the secondary block after the break statement:

while (true) {
double prod = ax*x;

if (fabs (1.0 - prod) < ¢€) { // Stops if close enough
break;

}

X *= (2.0 - prod); // Heron approximation

This way, we can separate the computation of the product a*x, the evaluation of
the stop condition, and the update of x. The condition of while then becomes trivial.
The same thing can be done using £or, and there is a tradition among C programmers
to write it as follows:

for (;;) {
double prod = ax*x;

if (fabs (1.0 - prod) < &) { // Stops if close enough
break;

}

X *= (2.0 - prod); // Heron approximation

}

for (; ;) hereisequivalent towhile (true) . The fact that the controlling expression
of £or (the middle part between the ; ;) can be omitted and is interpreted as “always
true” is just a historical artifact in the rules of C and has no other special purpose.

The continue statement is less frequently used. Like break, it skips the ex-
ecution of the rest of the secondary block, so all statements in the compound state-
ment after the continue are not executed for the current iteration. However, it then
re-evaluates the condition and continues from the start of the secondary block if the
condition is true:

for (size_t i =0; 1 < max_iterations; ++1i) {
if (x > 1.0) { // Checks if we are on the correct side of 1
x = 1.0/x;
continue;
}
double prod = axx;

if (fabs (1.0 - prod) < ¢€) { // Stops if close enough
break;

}

x *x= (2.0 - prod); // Heron approximation

In these examples, we use a standard macro £abs, which comes with the <tgmath.h>

header.i It calculates the absolute value of a double. Listing 3.1 is a complete pro-
gram that implements the same algorithm, where £abs has been replaced by several
explicit comparisons against certain fixed numbers: for example, eps1m24 defined to
be1-1-27%* orepsip24 as 1+1-2724, We will see later (section 5.8) how the literals
0x1P-24 (standing for the value 9224} and similar used in these definitions work and
how they interact with the constexpr construct (section 5.6.5).

ListinG 3.1. Computing multiplicative inverses of numbers

4“tgmath” stands for type generic mathematics and provides interfaces to numerical functions.
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#include <stdio.h>

/+ lower and upper iteration limits centered around 1.0 =*/
constexpr double epslm0l = 1.0 - 0x1P-01;
constexpr double epslpOl 1.0 + 0x1P-01;
constexpr double epslm24 1.0 - 0x1P-24;
constexpr double epslp24 = 1.0 + 0x1P-24;

int main (int argc, charx argv[argc+l]) {
for (int i = 1; i < argc; ++i) { // process args
double const a = strtod(argv[i], nullptr); // arg —-> double
double x = 1.0;
for (;;) { // by powers of 2
double prod = ax*x;
if (prod < epslm01) {

x *= 2.0;
} else if (epslp0l < prod) {
x x= 0.5;
} else {
break;
}
}
for (;;) { // Heron approximation
double prod = ax*x;
if ((prod < epslm24) || (epslp24 < prod)) {
x %= (2.0 - prod);
} else {
break;

}

printf ("heron: _a=%.5e, \tx=%.5e, \taxx=%.12f\n",
a, X, axx);

}

return EXIT SUCCESS;

In the first phase, the product of the current number under investigation a with the
current estimate x is compared to 1.5 and 0.5, and then x is multiplied by 0.5 or 2
until the product is close to 1. Then, the Heron approximation, as shown in the code,
is used in a second iteration to close in and compute the multiplicative inverse with a
high degree of accuracy.

The overall task of the program is to compute the inverse of all numbers that are
provided to it on the command line. An example of a program execution looks like
this:

Terminal

> ./heron 0.07 5 6E+23

heron: a=7.00000e-02, x=1.42857e+01, a*x=0.999999999996
heron: a=5.00000e+00, x=2.00000e-01, a*x=0.999999999767
heron: a=6.00000e+23, x=1.66667e-24, a*x=0.999999997028

To process the numbers on the command line, the program uses another library func-
tion strtod from <stdlib.h> Exs 5]Exs 6][Exs 7]

<stdlib.h>
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CHALLENGE 1 (Sequential sorting algorithms). Can you do

(1) A merge sort (with recursion)
(2) A quick sort (with recursion)

on arrays with sort keys such as double or strings to your liking?

Nothing is gained if you don’t know whether your programs are correct. Therefore, can you
provide a simple test routine that checks whether the resulting array really is sorted?

This test routine should just scan once through the array and should be much, much faster than
your sorting algorithms.

3.3. Multiple selection. The last control statement that C has to offer is the switch
statement, which is another selection® statement. It is mainly used when cascades of
if-else constructs would be too tedious:

if (arg == 'm’") {
puts ("this _is, a magpie");
} else if (arg == "r’) {
puts ("this _is, a_raven");
} else if (arg == "3’) {
puts ("this _is _a_Jjay");
} else if (arg == "c¢’) {
puts ("this _is, a, chough");
} else {
puts ("this _is,_an_unknown_corvid");

}

In this case, we have a choice that is more complex than a false-true decision and
that can have several outcomes. We can simplify this as follows:

switch (arg) {
case 'm’: puts("this _is_a, magpie");
break;
case ’'r’: puts("this _is_a_raven");
break;
case ’'J’: puts("this_is_a, jay");
break;
case ’'c’: puts("this _is_a, chough");
break;
default: puts("this_is_an_unknown_corvid");

}

Here we select one of the puts calls according to the value of the arg variable. Like
<stdio.h> print£, the function puts is provided by <stdio.h>. It outputs a line with the
string that is passed as an argument. We provide specific cases for characters "'m’ , "r’, ’3’,
and a special case labeled default. The default case is triggered if arg doesn’t match
any of the case values.[F* 8
Syntactically, a switch is as simple as

[Exs 5]Analyze listing 3.1 by adding print£ calls for intermediate values of x.
[Exs 61D egcribe the use of the parameters argc and argv in listing 8.1.
[Exs 7Ipring out the values of eps1m01 and observe the output when you change them slightly.

[Exs 8 Tegt the example switch statement in a program. See what happens if you leave out some of the
break statements.
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‘ switch (expression) secondary-block
L

and its semantics are quite straightforward: the case and default labels serve as
jump targets©. According to the value of the expression, control continues at the
statement that is labeled accordingly. If we hit a break statement, the whole switch
statement in which it appears is terminated, and then program control is transferred to
the next statement after the switch. By that specification, switch statements can be
used much more widely than iterated i £-else constructs:

switch (count) {
default:puts ("++++_..... ")
case 4: puts ("++++");
case 3: puts("+++");

case 2: puts ("++");
case 1: puts("+");
case 0: // prior to C23 this needed an extra “;”

}

Once we have jumped into the secondary block, execution continues until it reaches a
break or the end of the block. In this case, because there are no break statements,
we end up running all subsequent puts statements. For example, the output when the
value of count is 3 is a triangle with three lines:

Terminal

4+
++

The structure of a switch can be more flexible than i f-else, but it is restricted
in other ways.

Takeaway 3.8 #1 case values must be integer constant expressions.

Takeaway 3.3 #2 case values must be unique for each switch statement.

In section 5.6.2, we will see what these expressions are in detail. For now, it suffices
to know that these have to be fixed values that we provide directly in the source, such
as the 4, 3, 2, 1, 0 in the previous example. In particular, variables such as count are
only allowed in the switch part, not in the individual cases.

With the greater {lexibility of the switch statement also comes a price: it is more
error prone. In particular, we might accidentally skip variable definitions:

switch (x) {
unsigned tmp = 45;

case 0: printf ("the_temp_is_%u\n", tmp); // tmp may be uninitialized

}

Such variables are valid, but their initializer may not have been seen, for the ex-
ample when x is zero. So in this case a program execution where x happens to be zero
would be erroneous. Initialization (or lack thereof) will be discussed in more detail in
section .5.

Takeaway 3.3 #3 case labels must not jump beyond a variable definition.

Prior to C238, the placement of the case labels was even more restricted. They
necessarily had to mark a statement: labels in front of declarations or just in front of
the closing brace } of a compound statement were not valid.
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CHALLENGE 2 (Numerical derivatives). Something we’ll deal with a lot is the concept of nu-
merical algorithms. To get your hands dirty, see whether you can implement the numerical de-
rivative double f (double x) of a function double F (double x).

Implement this with an example F for the function you use for this exercise. A good primary choice
Jor F would be a function for which you know the derivative, such as sin, cos, or sqrt. Doing
so allows you to check your results for correctness.

CHALLENGE 8 (7). Compute the N first decimal places of r.
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Summary

e Numerical values can be directly used as conditions for i £ statements; 0 rep-
resents “false,” and all other values are “true.”

e There are three different iteration statements: for, do, and while. for is
the preferred tool for domain iterations.

e A switch statement performs multiple selections. One case runs into the
next if it is not terminated by a break.
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4. Expressing computations

This section covers

Performing arithmetic
Modifying objects

Working with booleans
The ternary operator
Setting the evaluation order

We've already used some simple examples of expressionsC. These are code snippets
that compute a value based on other values. The simplest such expressions are arith-
metic expressions, which are similar to those we learned in school. But there are others,
notably, comparison operators such as == and ! =, which we saw earlier.

4.1. Operands and operators. Here, the values and objects on which we will do
these computations will be mostly of the type size_t, which we have already met.
Such values correspond to “sizes,” so they are numbers that cannot be negative. Their
range of possible values starts at 0. What we would like to represent are all the non-
negative integers, often denoted as N, Ny, or “natural” numbers in mathematics. Un-
fortunately, computers are finite, so we can’t directly represent all the natural numbers,
but we can do a reasonable approximation. There is a big upper limit SIZE_MAX that
is the upper bound of what we can represent in a size_t.

Takeaway 4.1 #1  The type size_t represents values in the range [0, SIZE MAX].

The value of SIZE_MAX is quite large. Depending on the platform, it is one of

916 _1 = 65,535
9232 _1 = 4,294,967,295
964 _ 1 = 18,446,744,078,709,551,615

The first value is a minimal requirement; nowadays, such a small value would only
occur on some embedded platforms. The other two values are much more commonly
used today: the second is still found on some PCs and laptops, and the large majority of
newer platforms have the third. Such a choice of value is large enough for calculations
that are not too sophisticated. The standard header <stdint .h> provides SIZE_MAX
such that you don’t have to figure out that value yourself or specialize your program
accordingly.

The concept of “numbers that cannot be negative” to which we referred for size_t
corresponds to what C calls unsigned integer types®. Symbols and combinations like
+ and != are called operators®, and the things to which they are applied are called
operands® . So, in somethinglike a + b, + is the operator and a and b are its operands.

For an overview of all C operators, see the following tables:

o Table 4.1 lists the operators that operate on values.
o Table 4.2 lists those that operate on objects.
o Table 4.3 lists those that operate on types.

To work with these, you may have to jump from one table to another. For example, if
you want to work out an expression such as a + 5, where a is some variable of type
unsigned, you first have to go to the third line in table 4.2 to see that a is evaluated.
Then, you can use the third line in table 4.1 to deduce that the value of a and 5 are
combined in an arithmetic operation: a +. Don’t be frustrated if you don’t understand
everything in these tables. A lot of the concepts that are mentioned have not yet been
introduced; they are listed here to form a reference for the entire book.
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TaBLE 4.1. Value operators: The Form column gives the syntactic
form of the operation, where @ represents the operator and a and
possibly b denote values that serve as operands. For arithmetic and
bit operations, the type of the result is a type that reconciles the types
of a and b. For some of the operators, the Nick column gives an
alternative form of the operator or lists a combination of operators
that has special meaning. Most of the operators and terms will be
discussed later.

Type restriction
Operator Nick Form a b Result
a Narrow Wide Promotion
+ - alb Pointer Integer Pointer Arithmetic
+ - % / a@b Arithmetic Arithmetic | Arithmetic | Arithmetic
+ - Qa Arithmetic Arithmetic | Arithmetic
% alb Integer Integer Integer Arithmetic
~ compl Qa Integer Integer Bit
& bitand a@b Integer Integer Integer Bit
| bitor
~ xor
<< >> alb Integer Positive Integer Bit
== < > <= >= a@b Scalar Scalar 0,1 Comparison
1= not_eq a@b Scalar Scalar 0,1 Comparison
Ila a Scalar 0,1 Logic
la not Qa Scalar 0,1 Logic
&& || and or alb Scalar Scalar 0,1 Logic
a@m struct Value Member
* Qa Pointer Object Reference
[1 alb] Pointer Integer Object Member
—> a@m struct pointer Object Member
() a(b . Function pointer Value Call
sizeof Q@ a None size_t Size, ICE
alignof _Alignof @ (a) None size_t Alignment, ICE

4.2. Arithmetic. Arithmetic operators form the first group in table 4.1 of opera-

tors that operate on values.

4.2.1. +, -, and *. The arithmetic operators +, —, and * mostly work as we would
expect by computing the sum, the difference, and the product, respectively, of two

values:
size t a = 45;
size t b = 7;
size t c = (a - b)*2;
size_t d = a - b*2;

Here, c must be equal to 76, and d to 31. As you can see from this little example, sub-
expressions can be grouped together with parentheses to enforce a preferred binding of

the operator.

In addition, the operators + and — have unary variants. —b gives the negative of b:
avalue a such thatb + ais 0. +a simply provides the value of a. The following gives

76 as well:

i size t c =
L

(+a + -b)*2;

Even though we use an unsigned type for our computation, negation and difference
by means of the operator — are well defined” . That is, regardless of the values we feed
into such a subtraction, our computation will always have a valid result. In fact, one of
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TasLE 4.2. Object operators: The Form column gives the syntactic
form of the operation, where @ represents the operator, o denotes an
object, and a denotes a suitable additional value (if any) that serves
as an operand. An additional * in the Type column requires that the
object o be addressable.

l Operator [ Nick [ Form [ Type [ Result [ ]
o Array* Pointer | Array decay
o Function Pointer Function decay
o Other Value Evaluation
= oCa Non-array Value Assignment
t= —= x= /= ola Arithmetic Value Arithmetic
+= —= oGa Pointer Value Arithmetic
%= ola Integer Value Arithmetic
++ - @o o@ | Arithmetic or pointer Value Arithmetic
&= and_eq ola Integer Value Bit
= or_eq
N= Xor_eq
<<= >>= oRa Integer Value Bit
. o@m struct Object Member
1] olal Array* Object Member
& @o Any* Pointer | Address
sizeof @ o Data Object, non-VLA | size_t | Size, ICE
sizeof @ o VLA size_t | size
alignof _Alignof | Q(o) Non-function size_t | Alignment, ICE

TasLE 4.8. Type operators: These operators return an integer con-
stant (ICE) of type size_t. They have function-like syntax with the
operands in parentheses.

Operator | Nick Form Typeof T

sizeof sizeof (T) Any Size

alignof | _Alignof alignof (T) Any Alignment
offsetof | offsetof (T,m) | struct Member offset

the miraculous properties of size_t is that +—~ arithmetic always works where it can.
As long as the final mathematical result is within the range [0, SIZE_MAX], then that
result will be the value of the expression.

Takeaway 4.2.1 #1  Unsigned arithmetic is always well defined.

Takeaway 4.2.1 #2  The operations +, —, and * on size_t provide the mathematically
correct result if it is representable as a size_t.

When the result is not in that range and thus is not representable” as a size_t
value, we speak of arithmetic overflow”. Overflow can happen, for example, if we
multiply two values that are so large that their mathematical product is greater than
SIZE_MAX. We'll look how C deals with overflow in the next section.

4.2.2. Division and remainder. The operators / and % are a bit more complicated
because they correspond to integer division and the remainder operation. You might
not be as used to them as you are to the other three arithmetic operators. a/b evaluates
to the number of times b fits into a, and a%b is the remaining value once the maximum
number of bs are removed from a. The operators / and % come in pairs: if we have

[)

z = a / b, theremainder a % b can be computedasa - z=*b.

Takeaway 4.2.2 #1  For unsigned values, a == (a/b) *b + (a%b).
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A familiar example of the % operator is the hours on a clock. Say we have a 12-hour
clock: 6 hours after 8:00 is 2:00. Most people are able to compute time differences on
12-hour or 24-hour clocks. This computation correspondstoa % 12: in our example,
(8 + 6) % 12 == 2 @ Another similar use for % is computation using minutes
in an hour, of the form a % 60.

There is only one value that is not allowed for these two operations: 0. Division by

zero is forbidden.

Takeaway 4.2.2 #2  Unsigned / and % are only well defined if the second operand is not 0.

The % operator can also be used to explain additive and multiplicative arithmetic
on unsigned types a bit better. As already mentioned, when an unsigned type is given
a value outside its range, it is said to overflow®. In that case, the result is reduced as
if the % operator had been used. The resulting value “wraps around” the range of the
type. In the case of size_t, the range is 0 to SIZE_MAX.

Takeaway 4.2.2 #3  Arithmetic on size_t implicitly computes modulo SIZE_MAX + 1.

Takeaway 4.2.2 #4  In the case of overflow, unsigned arithmetic wraps around.

This means for size_t values, SIZE_MAX + lisequaltoO,and 0 — 1 isequal
to SIZE_MAX.

This “wrapping around” is the magic that makes the — operators work for unsigned
types. For example, the value -1 interpreted as a size_t is equal to SIZE_MAX; so
adding -1 to a value a just evaluates to a + SIZE_MAX, which wraps around to

a + SIZE_MAX - (SIZE MAX + 1) = a - 1
The operators / and % have the nice property that their results are always smaller than
or equal to their operands.

Takeaway 4.2.2 #5  The result of unsigned / and % is always smaller than the operands.

Takeaway 4.2.2 #6  Unsigned / and % can’t overflow.

4.3. Operators that modify objects. Another important operation that we have
already seen is assignment: @ = 42. As you can see from that example, this operator
is not symmetric; it has a value on the right and an object on the left. In a freaky abuse
of language, C jargon often refers to the right side as rvalue® (right value) and to the
object on the left as lvalue® (left value). We will try to avoid that vocabulary whenever
we can; speaking of a value and an object is sufficient.

C has other assignment operators. For any binary operator @, the five we have seen
all have the syntax

I ]

‘ an_object @= some_expression; ‘

L |
They are just convenient abbreviations for combining the arithmetic operator @

and the assignment; see table 4.2. A mostly equivalent form is

‘ an_object = (an_object @ (some_expression)); ‘
! |

In other words, there are operators +=, —=, =, /=, and $=. For example, in a for
loop, the operator += can be used:

[Exs 9]lmplemenl some computations using a 24-hour clock, such as 8 hours after 10:00 and 8 hours after
20:00.
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for (size .t i = 0; 1 < 25; 1 += 7) {

}

The syntax of these operators is a bit picky. You aren’t allowed to have blanks
between the different characters: for example, i + = 7 instead of i += 7 is a syntax
error.

Takeaway 4.3 #1  Operators must have all their characters directly attached to each other.

We already have seen two other operators that modify objects: the increment
operator ++ and the decrement operator® ——
e ++i isequivalentto i += 1.
e ——iisequivalentto i -= 1.

All these assignment operators are real operators. They return the value of the object
after the modification, but not the object itself. You could, if you were crazy enough,
write something like

a =Db = c += ++d;
a= (b= (c+= (++d))); // Same

But such combinations of modifications to several objects in one go is generally frowned
upon. Don’t do that unless you want to obfuscate your code. Such changes to objects
that are involved in an expression are referred to as side effectsC.

Takeaway 4.3 #2  Side effects in value expressions are evil.

Takeaway 4.3 #8  Never modify more than one object in a statement.

For the increment and decrement operators, there are two other forms: postfix
increment® and postfix decrement® . They differ from the one we have seen in the re-
sult they provide to the surrounding expression. The prefix versions of these operators
(++a and ——a) do the operation first and then return the result, much like the cor-
responding assignment operators (a+=1 and a—=1); the postfix operations return the
value before the operation and perform the modification of the object thereafter. For
any of them, the effect on the variable is the same: the incremented or decremented
value.

All this shows that the evaluation of expressions with side effects may be difficult to
follow. Don’t do it.

4.4. Boolean context. Several operators yield a value of 0 or 1, depending on
whether some condition is verified; see table 4.1. They can be grouped into two cate-
gories: comparisons and logical evaluation.

4.4.1. Comparison. In our examples, we already have seen the comparison oper-
ators ==, /=, <, and >. Whereas the latter two perform strict comparisons between
their operands, the operators <= and >= perform “less than or equal to” and “greater
than or equal t0” comparisons, respectively. All these operators can be used in control
statements, as we have already seen, but they are actually more powerful than that.

Takeaway 4.4.1 #1  Comparison operators return the value false or true.

Remember that false and t rue are nothing more than fancy names for 0 and 1,
respectively. So, they can be used in arithmetic or for array indexing. In the following
code, c will always be 1, and d will be 1 if a and b are equal and 0 otherwise:
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size_t ¢ = (a <b) + (a ==Db) + (a > b);
size .t d = (a <= b) + (a >=b) - 1;

In the next example, N is a big number, and the array element sign [false] will hold
the number of values in 1argeA that are greater than orequalto 1.0 and sign [true]
those that are strictly less:

double largeA[N] = { };

/* Fill largeA somehow =/

size_t sign[2] = { 0, 0 };
for (size_ t i = 0; 1 < N; ++i) {
sign[ (largeA[i] < 1.0)] += 1;
}
[false] [true]
sign size t size t

Finally, there is also an identifier not_eq that may be used as a replacement for
! =. This feature is rarely used. It dates back to the times where some characters were
not properly present on all computer platforms. To be able to use it, you'd have to
include the file <iso0646.h> .

4.4.2. Logic. Logic operators operate on values that are already supposed to rep-
resent a false or true value. If they do not, the rules described for conditional execu-
tion (takeaway 3.1 #1) apply first. The operator ! (not) logically negates its operand,
and operators && (and) is logical and, and |/ | (or) is logical or. The results of these
operators are summarized in table 4.4.

TaBLE 4.4. Logical operators

a ‘ not a a and b ‘ false true a or b ‘ false true
false | true false false false false | false true
true | false true false true true true true

Similar to the comparison operators, logic operators return truth values.

Takeaway 4.4.2 #1  Logic operators return the value false or true.

Again, remember that these values are nothing more than 0 and 1 and can thus be
used as indices:

double largeA[N] = { };

/+* Fill largeA somehow x/

size t isset([2] = { 0, 0 };
for (size_ t i = 0; 1 < N; ++1i) {
isset[!!largeA[i]] += 1;

}

Here, the expression ! ! largeA [1] applies the ! operator twice and thus just ensures
that largeA[i] is evaluated as a truth value (takeaway 3.1 #4). As a result, the array
elements isset [0] and isset [1] will hold the number of values that are equal to

0.0 and unequal, respectively:
[false] [true]

isset size_t size_t

<iso646.h>
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@}

The operators && and | | have a particular property called short-circuit evaluation
This barbaric term denotes the fact that the evaluation of the second operand is omitted
if it is not necessary for the result of the operation:

// This never divides by 0.
if (b != 0 && ((a/b) > 1)) |
++x;

}

Here, the evaluation of a/b is omitted conditionally during execution, and thereby a
division by zero can never occur. Equivalent code would be

if (b) {
// This never divides by 0.
if (a/b > 1) {
++x;

4.5. The ternary or conditional operator. The ternary operator is similar to an i £
statement, but it is an expression that returns the value of the chosen branch:

size t size_min(size_t a, size_t b) {
return (a < b) ? a : b;

}

Similar to the operators && and | |, the second and third operand are evaluated only

if they are really needed. The macro sgrt from <tgmath.h> computes the square

root of a non-negative value. Calling it with a negative value raises a domain error®:

#include <tgmath.h>

#ifdef __ STDC_NO_COMPLEX
# error "we_need _complex_arithmetic"
#endif

double complex sqgrt_real (double x) {
return (x < 0) ? CMPLX (0, sqgrt(-x)) : CMPLX(sqrt(x), 0);
}

In this function, sgrt is called only once, and the argument to that call is never nega-
tive. So, sqrt_real is always well behaved; no bad values are ever passed to sgrt.

Complex arithmetic and the tools used for it require the header <complex.h>,
which is indirectly included by <tgmath.h>. They will be introduced later, in sec-
tion 5.7.8.

In the previous example, we also see a conditional compilation that is achieved
with preprocessor directivesC. The #ifde£ construct ensures that we hit the #error
condition only if the macro __STDC_NO_COMPLEX___is defined.

4.6. Evaluation order. Of the operators so far, we have seen that &&, | |, and ?:
condition the evaluation of some of their operands. This implies in particular that for
these operators, there is an evaluation order for the operands: the first operand, since
it is a condition for the remaining ones, is always evaluated first.

Takeaway 4.6 #1 &¢&, |/, ?:, and , evaluate their first operand first.

The comma (,) is the only operator we haven’t introduced yet. It evaluates its
operands in order, and the result is the value of the right operand. For example,
(f(a), £ (b)) first evaluates f (a) and then f (b) ; the result is the value of f (b).
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Be aware that the comma character plays other syntactical roles in C that do not use the
same convention about evaluation. For example, the commas that separate initializa-
tions do not have the same properties as those that separate function arguments.

The comma operator is rarely useful in clean code, and it is a trap for beginners:
A[i, 7] is not a two-dimensional index for matrix A, but results in A[ §7.

Takeaway 4.6 #2  Don’t use the , operator.

Other operators don’t have an evaluation restriction. For example, in an expression
such as f (a) +g (b), there is no pre-established order specifying whether f (a) or
g (b) is to be computed first. If either the function £ or g works with side effects (for
instance, if £ modifies b behind the scenes), the outcome of the expression will depend
on the chosen order.

Takeaway 4.6 #3  Most operators don’t sequence their operands.

That order may depend on your compiler, the particular version of that compiler,
compile-time options, or just the code that surrounds the expression. Don’t rely on any
such particular sequencing; it will bite you.

The same holds for function arguments. In something like

[
‘ printf ("%g_and_%g\n", f(a), f£(b));
L

we wouldn’t know which of the last two arguments is evaluated first.

Takeaway 4.6 #4  Function calls don’t sequence their argument expressions.

The only reliable way not to depend on evaluation ordering of arithmetic expres-
sions is to ban side effects.

Takeaway 4.6 #5  Functions calls within expressions should not have side effects.
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CHALLENGE 4 (Union-Find). The Union-Find problem deals with the representation of par-
titions over a base set. We will identify the elements of the base set using the numbers 0, 1, ...
and will represent partitions with a forest data structure where each element knows a “parent”
that is another element inside the same partition. Each set in such a partition is identified by a
designated element called the root of the set.
We want to perform two principal operations:

o A Find operation receives one element of the ground set and returns the root of the

corresponding set.
o A Union® operation receives two elements and merges the two sets to which these
elements belong into one.

Can you implement a forest data structure in an index table of base type size_ t called
parent? Here, a value in the table SIZE_MAX would mean a position represents a root
of one of the trees; another number represents the position of the parent of the corresponding tree.
One of the important features of starting the implementation is an initialization function that
makes parent the singleton partition; that is, the partition where each element is the root of its
own private set.
With this index table, can you implement a Find function that, for a given index, finds the root
of its tree?
Can you implement a FindReplace function that changes all parent entries on a path to
the root (including) to a specific value?
Can you implement a FindCompress function that changes all parent entries to the root
that has been found?
Can you implement a Union function that, for two given elements, combines their trees into
one? Use FindCompress for one side and FindReplace for the other.

4C also has a concept called a union, which we will see later and which is completely different than the
operation we are currently talking about. Because union is a keyword, we use capital letters to name the
operations here.
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Summary

Arithmetic operators do math. They operate on values.

Assignment operators modify objects.

Comparison operators compare values and return 0 or 1.

Function calls and most operators evaluate their operands in a nonspecific
order. Only &&, | |, and ?: impose an ordering on the evaluation of their
operands.
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5. Basic values and data

This section covers

Understanding the abstract state machine
Working with types and values
Initializing variables

Using named constants

Binary representations of types

We will now change our focus from “how things are to be done” (statements and ex-
pressions) to the things on which C programs operate: values® and data®. A concrete
program at an instance in time has to represent values. Humans have a similar strategy:
nowadays, we use a decimal presentation to write numbers on paper using the Hindu-
Arabic numeral system. But we have other systems to write numbers: for example,
Roman numerals (i, ii, iii, iv, and so on) or textual notation. To know that the word
twelve denotes the value 12 is a nontrivial step and reminds us that European languages
denote numbers not only in decimal but also in other systems. English and German mix
with base 12, French with bases 16 and 20. For non-native French speakers like myself,
it may be difficult to spontaneously associate quatre vingt quinze (four times twenty and
fifteen) with the value 95.

Similarly, representations of values on a computer can vary “culturally” from ar-
chitecture to architecture or are determined by the type the programmer gave to the
value. Therefore, we should try to reason primarily about values and not about repre-
sentations if we want to write portable code.

If you already have some experience in C and in manipulating bytes and bits, you
will need to make an effort to actively “forget” your knowledge for most of this section.
Thinking about concrete representations of values on your computer will inhibit you
more than it helps you.

Takeaway 5 #1  C programs primarily reason about values and not about their representa-
tion.

The representation that a particular value has should, in most cases, not be your
concern. The compiler is there to organize the translation back and forth between
values and representations.

In this section, we will see how the different parts of this translation are supposed to
work. The ideal world in which you will usually “argue” in your program is C’s abstract
state machine (section 5.1). It gives a vision of the execution of your program, which
is mostly independent of the platform on which the program runs. The components
of the state of this machine, the objects, all have a fixed interpretation (their type) and a
value that varies in time. C’s basic types are described in subsection 5.2, followed by
descriptions of how we can express specific values for such basic types (subsection 5.3),
how types are assembled in expressions (subsection 5.4), how we can ensure that our
objects initially have the desired values (subsection 5.5), how we can give names to
recurrent values (subsection 5.6), and how such values are represented in the abstract
state machine (subsection 5.7).

5.1. The abstract state machine. A C program can be seen as a sort of machine
that manipulates values: the particular values that variables of the program have at a
given time and intermediate values that are the result of computed expressions. Let us
consider a basic example:
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double x
double y

Il
w o

x = (x * 1.5) - y;
printf ("x_is_\%g\n", x);

Here we have two variables, x and y, that have initial values 5. 0 and 3. 0, respectively.
The third line computes some expressions: the subexpression

I |
o |
! |

that evaluates x and provides the value 5.0

| (5.0 « 1.5) |

that results in the value 7.5

Ly |

that evaluates y and provides the value 3.0

EEETEX |

that results in 4. 5;

that changes the value of x to 4.5

[ ]
o |
! |

that evaluates x again but now provides the value 4.5 and

i printf ("x_is_\%g\n", 4.5) i
! |
that outputs a text line to the terminal.

Not all operations and their resulting values are observable from within your pro-
gram. They are observable only if they are stored in addressable memory or written to
an output device. In the example, to a certain extent, the print £ statement “observes”
what was done on the previous line by evaluating the variable x and then writing a string
representation of that value to the terminal. But the other subexpressions and their re-
sults (such as the multiplication and subtraction) are not observable as such, since we
never define a variable that is supposed to hold these values.

Your C compiler is allowed to shortcut any of the steps during a process called
optimization® only if it ensures the realization of the end results. Here, in our toy
example, there are basically two possibilities. The first is that variable x is not used
later in the program, and its acquired value is only relevant for our print £ statement.
In that case, the only effect of our code snippet is the output to the terminal, and the
compiler may well (and will!) replace the whole snippet with the equivalent

i |
‘ printf ("x_is_4.5\n"); ‘

That is, it will do all the computations at compile time, and the executable that is pro-
duced will just print a fixed string. All the remaining code and even the definitions of
the variables disappear.

The other possibility is that x might be used later. Then a decent compiler would
either do something like
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double x = 4.5;
printf ("x_is_4.5\n");

or maybe

printf ("x_is_4.5\n");
double x = 4.5;

because to use x at a later point, it is not relevant whether the assignment took place
before or after the print£.

For an optimization to be valid, it is only important that a C compiler produces
an executable that reproduces the observable states®. Observable states consist of the
contents of some variables (and similar entities that we will see later) and the output as
they evolve during the execution of the program. This whole mechanism of change is
called the abstract state machine® .

To explain the abstract state machine, we first have to look into the concepts of
a value (what state are we in), the type (what this state represents), and the representa-
tion (how state is distinguished). As the term abstract suggests, C’s mechanism allows
different platforms to realize the abstract state machine of a given program differently
according to their needs and capacities. This permissiveness is one of the keys to C’s
potential for optimization.

5.1.1. Values. Awvaluein C is an abstract entity that usually exists beyond your pro-
gram, the particular implementation of that program, and the representation of the
value during a particular run of the program. As an example, the value and concept
of 0 should and will always have the same effects on all C platforms: adding that value
to another value x will again be x, and evaluating a value 0 in a control expression will
always trigger the £alse branch of the control statement.

So far, most of our examples of values have been some kind of numbers. This is
not an accident; it relates to one of the major concepts of C.

Takeaway 5.1.1 #1 Al values are numbers or translate to numbers.

This property really concerns all values a C program is about, whether these are
the characters or text we print, truth values, measures that we take, or relations that we
investigate. Think of these numbers as mathematical entities that are independent of
your program and its concrete realization.

The data of a program execution consists of all the assembled values of all objects
at a given moment. The state of the program execution is determined by

e The executable

e The current point of execution

e The data

e Outside intervention, such as the IO from the user

If we abstract from the last point, an executable that runs with the same data from the
same point of execution must give the same result. But since C programs should be
portable between systems, we want more than that. We don’t want the result of a com-
putation to depend on the executable (which is platform specific) but ideally to depend
only on the program specification itself. An important step to achieve this platform
independence is the concept of types©.

5.1.2. Types. A type is an additional property that C associates with values. Up
to now, we have seen several such types, most prominently size_t, but also double
and bool.

Takeaway 5.1.2 #1  All values have a type that is statically determined.
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Takeaway 5.1.2 #2  Possible operations on a value are determined by its type.

Takeaway 5.1.2 #3 A value’s type determines the results of all operations.

5.1.8. Binary representation and the abstract state machine. Unfortunately, the variety
of computer platforms is not such that the C standard can completely impose the results
of the operations on a given type. Things not completely specified as such by the stan-
dard include, for example, the precision to which a double floating-point operation
is performed (floating-point represenmtion).B C only imposes properties on represen-
tations such that the results of operations can be deduced a priori from two different
sources:

e The values of the operands
e Some characteristic values that describe the particular platform

For example, the operations on the type size_t can be entirely determined when
inspecting the value of SIZE_WIDTH in addition to the operands. i We call the model
to represent values of a given type on a given platform the binary representation® of
the type.

Takeaway 5.1.8 #1 A type’s binary representation determines the results of all operations.

Generally, all information we need to determine that model is within reach of any
C program. The C library headers provide the necessary information through named
values (such as SIZE_MAX), operators, and function calls.

Takeaway 5.1.8 #2 A type’s binary representation is observable.

This binary representation is still a model and thus an abstract representation in the
sense that it doesn’t completely determine how values are stored in the memory of a
computer or on a disk or other persistent storage device. That representation is the
object representation. In contrast to the binary representation, the object representation
is usually not of much concern to us as long as we don’t want to hack together values of
objects in main memory or have to communicate between computers that have different
platform models. Much later, in section 12.1, we will see that we can even observe the
object representation, if such an object is stored in memory and we know its address.

As a consequence, all computation is fixed through the values, types, and their
binary representations that are specified in the program. The program text describes
an abstract state machine® that regulates how the program switches from one state to
the next. These transitions are determined by value, type, and binary representation
only.

Takeaway 5.1.3 #8 (as-if)  Programs execute as if following the abstract state machine.

5.1.4. Optimization. How a concrete executable manages to follow the description
of the abstract state machine is left to the discretion of the compiler creators. Most
modern C compilers produce code that doesn’t follow the exact code prescription: they
cheat wherever they can and only respect the observable states of the abstract state ma-
chine. For example, a sequence of additions with constant values such as

100 ther international standards are more restrictive about these representations. For example, the POSIX
standard enforces a particular sign representation, and ISO/IEC/IEEE 60559 [2011] normalizes floating-
point representations.

Hpior to (€23, this value was not available. We needed the value of SIZE_MAX (see previous discussion).
This value can be deduced from SIZE_WIDTH. Similarly, by knowing that the sign representation now is
fixed to 2’s complement, the minimal and maximal values can be deduced for all integer types.
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X += 5;
/* Do something else without x in the meantime. =/
X += 7;

may in many cases be done as if it were specified as either

/* Do something without x. =*/
x += 12;

x += 12;
/* Do something without x. x/

The compiler may perform such changes to the execution order as long as there will
be no observable difference in the result: for example, as long as we don’t print the
intermediate value of x and as long as we don’t use that intermediate value in another
computation.

But such an optimization can also be forbidden because the compiler can’t prove
that a certain operation will not force program termination. In our example, much
depends on the type of x. If the current value of x could be close to the upper limit
of the type, the innocent-looking operation x += 7 may produce an overflow. Such
overflows are handled differently according to the type. As we have seen, overflow of an
unsigned type is not a problem, and the result of the condensed operation will always
be consistent with the two separate ones. For other types, such as signed integer types
(signed) and floating-point types (double), an overflow may raise an exception and
terminate the program. In that case, the optimization cannot be performed.

As we have already mentioned, this allowed slackness between program description
and abstract state machine is a very valuable feature, commonly referred to as optimiza-
tion. Combined with the relative simplicity of its language description, this is actually
one of the main features that allows C to outperform other programming languages
that have a lot more knobs and whistles. An important consequence of this discussion
can be summarized in the following takeaway.

Takeaway 5.1.4 #1  Type determines optimization opportunities.

5.2. Basic types. C has a series of basic types and means of constructing derived
types from them that we will describe later, in section 6.

Mainly for historical reasons, the system of basic types is a bit complicated, and
the syntax to specify such types is not completely straightforward. There is a first level
of specification that is done entirely with keywords of the language, such as signed,
int, and double. This first level is mainly organized according to C internals. On top
of that is a second level of specification that comes through header files, and we have
already seen examples: size_t and bool. This second level is organized by type
semantics, specifying what properties a particular type brings to the programmer.

We will start with the first-level specification of such types. As we discussed earlier
(takeaway 5.1.1 #1), all basic values in C are numbers, but there are different kinds
of numbers. As a principal distinction, we have two different classes of numbers, each
with two subclasses each: unsigned integers®, signed integersC, real floating-point
numbersC, and complex floating-point numbers® . Each of these four classes contains
several types. They differ according to their precision®, which determines the valid
range of values that are allowed for a particular type.z Table 5.1 contains an overview
of the 18 base types.

P - .
12The term precision is used here in a restricted sense as the C standard defines it. It is different from the
accuracy of a floating-point computation.
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TaBLE 5.1. Base types according to the four main type classes. Types
with a gray background don’t allow for arithmetic; they are promoted

before doing arithmetic. Type char is special since it can be unsigned
or signed, depending on the platform. All types in this table are con-
sidered to be distinct types, even if they have the same class and pre-

cision.
Class \ Systematic name Other name Rank
bool _Bool 0
unsigned char 1
. unsigned short 2
Unsigned unsigned int unsigned 3
unsigned long 4
unsigned long long 5
Integers [Un]signed char 1
signed char 1
signed short short 2
Signed signed int signedor int 3
signed long long 4
signed long long long long 5
float
Real double
Floating point long double
h float _Complex float complex
Complex double _Complex double complex
long double _Complex longdouble complex

As you can see from the table, there are six types that we can’t use directly for
arithmetic, the narrow types®. They are promoted‘ to one of the wider types before
they are considered in an arithmetic expression. Nowadays, on any realistic platform,
this promotion will be a signed int of the same value as the narrow type, regardless
of whether the narrow type was signed.

Takeaway 5.2 #1  Before arithmetic, narrow integers are promoted to signed int.

Observe that among the narrow integer types, we have two prominent members:
char and bool. The first is C’s type that handles printable characters for text, and the
second holds truth values, false and true. As we said earlier, for C, even these are
just some sort of numbers. The 12 remaining, unpromoted types split nicely into the
four classes.

Takeaway 5.2 #2  Each of the four classes of base types has three distinct unpromoted types.

Contrary to what many people believe, the C standard doesn’t prescribe the preci-
sion of these 12 types: it only constrains them. They depend on a lot of factors that are
implementation defined” .

One of the things the standard does prescribe is that the possible ranges of values
for the signed types must include each other according to their rank:

short int |long|long long
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But this inclusion does not need to be strict. For example, on many platforms, the set of
values of int and long are the same, although the types are considered to be different.
An analogous inclusion holds for the six unsigned types:

unsigned unsigned

unsigned unsigned
long long long

char short unsigned

But remember that for any arithmetic or comparison, the narrow unsigned types are
promoted to signed int and not to unsigned int, as this diagram might suggest.

The comparison of the ranges of signed and unsigned types is more difficult. Ob-
viously, an unsigned type can never include the negative values of a signed type. For
the non-negative values, we have the following inclusion of the values of types with
corresponding rank:

Non-negative signed values | Unsigned values

That is, for a given rank, the non-negative values of the signed type fit into the unsigned
type. On any modern platform you encounter, this inclusion is strict: the unsigned type
has values that do not fit into the signed type. For example, a common pair of maximal
values is 231 — 1 = 2,147,488,647 for signed int and 232 — 1 = 4,294,967,295 for
unsigned int.

Because the interrelationship between integer types depends on the platform, choos-
ing the “best” type for a given purpose in a portable way can be a tedious task. Luck-
ily, we can get some help from the compiler implementation, which provides us with
typedefs such as size_t that represent certain features.

Takeaway 5.2 #8 Use size_t for sizes, cardinalities, or ordinal numbers.

Remember that unsigned types are the most convenient because they are the only
types that have an arithmetic that is defined consistently with mathematical properties:
the modulo operation. They can’t raise signals on overflow and can be optimized best.
They are described in more detail in subsection 5.7.1.

Takeaway 5.2 #4  Use unsigned for small quantities that can’t be negative.

If your program needs values that may be either positive or negative but do not
include fractions, use a signed type (see subsection 5.7.5).

Takeaway 5.2 #5  Use signed for small quantities that bear a sign.

Takeaway 5.2 #6 Use ptrdiff t for large differences that bear a sign.

If you want to do fractional computation with avalue suchas 0. 50r3.771’ 89E+89,
use floating-point types (see subsection 5.7.8).

Takeaway 5.2 #7 Use double for floating-point calculations.

Takeaway 5.2 #8 Use double complex for complex calculations.
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TaBLE 5.2. Some semantic arithmetic types for specialized use cases

Type Header Context of definition Meaning

size_t <stddef.h> Type for “sizes” and cardi-
nalities

ptrdiff t | <stddef.h> Type for size differences

uintmax_t | <stdint.h> Unsigned integer type of
preprocessor

intmax t | <stdint.h> Signed integer type of pre-
processor

time_t <time.h> time (0), Calendar time in seconds

difftime (tl, tO) since epoch
clock t <time.h> clock () Processor time

The C standard defines a lot of other types, among them other arithmetic types that
model special use cases. Table 5.2 list some of them. The second pair represents the
type in which the preprocessor does any of its arithmetic or comparison. Prior to C23
these were the types of maximal width that the compiler supported, but this constraint
has been relaxed; under certain circumstances, there may be extended integer types that
are wider (see section 5.7.6).

The two types time_t and clock_t are used to handle times. They are semantic
types because the precision of the time computation can be different from platform to
platform. The way to have a time in seconds that can be used in arithmetic is the
function difftime: it computes the difference of two timestamps. elock_t values
present the platform’s model of processor clock cycles, so the unit of time is usually
much less than a second; CLOCKS_PER_SEC can be used to convert such values to
seconds.

5.8. Specifying values. We have already seen several ways in which numerical
constants (literals®) can be specified:
123 Decimal integer literal° —The most natural choice for most of us.
077 Octal integer literal® —This is specified by a sequence of digits, the first
being 0 and the following between 0 and 7. For example, 077 has the value
63. This type of specification merely has historical value and is rarely used
nowadays. Only one octal literal is commonly used: 0 itself.
O0xFFFF Hexadecimal integer literal®—This is specified by starting with 0x followed

by a sequence of digits between 0, ..., 9 and a ... f. For example, Oxbeaf
has the value 48,815. The a .. f and x can also be written in capitals,
OXBEAF.

001010 Binary integer literal°—This is specified by starting with 0b followed by
a sequence of 0 or 1 digits. For example, 0b1010 has the value 10. The
leading Ob may also be written as OB instead. Binary literals were introduced
in C28.

1.7E-13 Decimal floating-point literals—These literals are quite familiar as the
version with a decimal point. But there is also the “scientific” notation with
an exponent. In the general form, mEe is interpreted as m - 10¢.

0x1.7aP-13 Hexadecimal floating-point literals —These are usually used to describe

floating-point values in a form that makes it easy to specify values that have
exact representations. The general form 0XhPe is interpreted as & - 2¢. Here,
h is specified as a hexadecimal fraction. The exponent e is still specified as a
decimal number.
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*a’ Integer character literal°—These are characters put between ’ apostrophes,
suchas "a’ or’ 2’ . These have values that are only implicitly fixed by the C
standard. For example, ’ a’ corresponds to the integer code for the character
a of the Latin alphabet.

Among character literals, the \ character has a special meaning. For ex-

ample, we already have seen " \\n’ for the newline character.
"hello" String literals—They specify text, such as that needed for the print £ and
puts functions. Again, the \ character is special, as with character literals.1_3

All literals except the last are numerical constants: they specify numbers."* String lit-
erals are an exception and can be used to specify text that is known at compile time.
Integrating larger text into our code could be tedious, if we weren’t allowed to split string
literals into chunks:

puts ("first_line\n"
"another_line\n"
"first_and_"

"second,_part_of_the_third _line");

Takeaway 5.8 #1  Consecutive string literals are concatenated.

The rules for numbers are a little bit more complicated.

Takeaway 5.3 #2  Numerical literals are never negative.

That is, if we write something like —=34 or -1 . 5E-23, the leading sign is not con-
sidered part of the number but is the negation operator applied to the number that comes
after it. We will see shortly where this is important. Bizarre as this may sound, the mi-
nus sign in the exponent is considered to be part of a floating-point literal.

We have already seen (takeaway 5.1.2 #1) that all literals must have not only a
value but also a type. Don’t mix up the fact that a literal has a positive value with its
type, which can be signed.

Takeaway 5.3 #3  Decimal integer literals are signed.

This is an important feature: we’d probably expect the expression —1 to be a signed,
negative value.
To determine the exact type for integer literals, we always have a first fit rule.

Takeaway 5.3 #4 A decimal integer literal has the first of the three signed types that fits.

This rule can have surprising effects. Suppose that on a platform, the minimal
signed value is =219 = 82’768 and the maximum value is 2!° — 1 = 82/767. The
literal 832’768 then doesn’t fit into signed and is thus signed long. As a conse-
quence, the expression =32’ 768 has type signed long. Thus the minimal value of
the type signed on such a platform cannot be written as a literal.[Fxs 19]

Takeaway 5.3 #5  The same value can have different rypes.

131f ysed in the context of the printf function, another character also becomes “special”: the % character.
If you want to print a literal & with print£, you have to duplicate it.

14You may have observed that complex numbers are not included in this list. We will see how to specify
them in subsection 5.3.1.

[ 5 ~ . CE) . . . . .
[Exs 15]Ghow that if the minimal and maximal values for signed long long have similar properties, the
smallest integer value for the platform can’t be written as a combination of one literal with a minus sign.
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Deducing the type of a binary, octal, or hexadecimal literal is a bit more com-
plicated. These can also be of an unsigned type if the value doesn’t fit for a signed
type. In the earlier example, the hexadecimal literal 0x7FFF has the value 32,767
and thus is type signed. Other than for the decimal literal, the literal 0x8000 (value
32768 written in hexadecimal) then is an unsigned, and expression —0x8000 again
is unsigned.[Fs 16]

Takeaway 5.3 #6  Don’t use binary, octal, or hexadecimal literals for negative values.

As a consequence, there is only one choice left for negative values.

Takeaway 5.8 #7  Use decimal literals for negative values.

TasLE 5.3. Examples for literals and their types, under the supposi-
tion that signed and unsigned have the commonly used represen-
tation with 32 bits

Literal z

Value

Type

Value of —x

2714774837647
271477483" 648
472947967295

+2,147,483,647
+2,147,483,648
+4,294,967,295

signed
signed long
signed long

-2,147,483,647
-2,147,483,648
—4,294,967,295

Ox7FFF'FFFF | +2,147,483,647 | signed -2,147,483,647
0x8000’ 0000 | +2,147,483,648 | unsigned +2,147,483,648
OXFFFF’'FFFF | +4,294,967,295 | unsigned +1
1 +1 | signed -1

1U +1 | unsigned +4,294,967,295

A common error is to try to assign a hexadecimal literal to a signed with the
expectation that it will represent a negative value. Consider a declaration such as int x
= OxXFFFF’ FFEFF. This is done under the assumption that the hexadecimal value has
the same binary representation as the signed value —1. On most architectures with 32-bit
signed, this will be true (but not on all of them). However, then nothing guarantees
that the effective value +4,294,967,295 is converted to the value —1. Table 5.3 has
some examples of interesting literals, their values, and their types.

So a possible prefix (0, 0b or 0x) not only specifies the base in which an integer
literal is read, but indirectly may also have an influence for the deduced type. This
deduced type can be changed by a suflix that is appended to the literal.

TaBLE 5.4. Suffixes for integer literals and their types

Suffix Type

lorL At least long

1l orLL | long long

wb or WB | _BitInt (N) for sufficiently large N
uorU Force unsigned

For example, 1U has value 1 and type unsigned, 1L is signed long, and 1ULL
has the same value 1 but type unsigned long long.[™ 71 Note that we are rep-
resenting C literals such as 1ULL in typewriter font and distinguish them from their
mathematical value 1, which is in normal font.

[Exs 161ghow that if the maximum unsigned is 216 — 1, then ~0x8000 has value 32,768, too.
[Exs 1/]Show that the expressions —1U, —1UL, and —1ULL have the maximum values and type as the three
P yp
non-promoted unsigned types, respectively.
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So with suffixes, integer literals can be forced to have a type with minimal rank.
For a decimal integer literal, if there is one 1 or L the type is Long if the value fits and
long long otherwise. If there are two (11 or LL), the type is fixed to Long long. For
prefixed integer literals (0, Ob, or 0x), these suffixes still may be unsigned long or
unsigned long long, depending on the value. To force an unsigned type, we can
add u or U to the suffix.

The suffix wb or WB that was introduced in C23 forces the literal to have a specific
bit-precise type. With a possible combination of u or U, it is the only suffix that can
guarantee a type of a specific signedness regardless of the base. We will see these types
a bit later in section 5.7.7.

Remember that value 0 is important. It is so important that it has a lot of equivalent
spellings: 0, 0x0, and ’ \0’ are all the same value, a 0 of type signed int. Zero
has no decimal integer spelling: 0. 0 s a decimal spelling for the value 0 but is seen as
a floating-point value with type double.

Takeaway 5.3 #8  Different literals can have the same value.

For integers, this rule looks almost trivial, but for floating-point literals, it is less ob-
vious. Floating-point values are only an approzximation of the value they present literally
because binary digits of the fractional part may be truncated or rounded.

Takeaway 5.3 #9  The effective value of a decimal floating-point literal may be different from
its literal value.

For example, on my machine, the literal 0. 2 has the value

0.200,000,000,000,000,011,1

As a consequence, the literals 0.2 and 0.2007 0007 0007000’ 0007 011" 1 have the
same value.

Hexadecimal floating-point literals were designed to correspond better with the
binary representations of floating-point values. In fact, on most modern architectures,
such a literal (that does not have too many digits) will exactly correspond to the lit-
eral value. Unfortunately, these beasts are almost unreadable for mere humans. For
example, consider the two literals

0x1.9999’ 9AP-3 and 0xC.CCCC’ CCCC’ CCCC’ CCDP-6.
They correspond to
1.600,000,028,84 + 273 and 12.800,000,000,000,000,000,2 % 2-6;
thus, expressed as decimal floating points, their values are approximatively
0.200,000,002,98 and 0.200,000,000,000,000,000,003.

So the two literals have values that are very close to each other, whereas their represen-
tation as hexadecimal floating-point literals seems to put them far apart.

Finally, floating-point literals can be followed by the letter £ or F to denote a £1loat
orby 1 or L to denote a long double. Otherwise, they are of type double. Be aware
that different types of literals generally lead to different values for the same literal. Here
is a typical example:

float double long double
Literal 0.2F 0.2 0.2L
Value 0x1.9999’ 9AP-3F | 0x1.99997 9999’ 9999AP-3 | 0xC.CCCC’ CCCC’ CCCC’ CCDP-6L

Takeaway 5.3 #A  Literals have value, type, and binary representations.
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5.8.1. Complex constants. Complex types are not necessarily supported by all C
platforms. This fact can be checked by inspecting __STDC_NO_COMPLEX__. To
have full support of complex types, the header <complex.h> should be included. If
you use <tgmath .h> for numerical functions, this is already done implicitly.

Unfortunately, C provides no literals to specify literals of a complex type. It only
has several macrosﬁ that may ease the manipulation of these types.

The first possibility to specify complex values is the macro CMPLX, which comprises
two floating-point values, the real and imaginary parts, in one complex value. For ex-
ample, CMPLX (0.5, 0.5) isadouble complex value with the real and imaginary
part of one-half. Analogously, there are CMPLXF for £loat complex and CMPLXL
for long double complex.

Another, more convenient, possibility is provided by the macro I, which repre-
sents a constant value of type £loat complex such that I+I has the value —1. One-
character macro names in uppercase are often used in programs for numbers that are
fixed for the whole program. By itself, it is not a brilliant idea (the supply of one-
character names is limited), and you should definitely leave I alone.

Takeaway 5.38.1 #1 I is reserved for the imaginary unil.

I can be used to specify constants of complex types similar to the usual mathemat-
ical notation. For example, 0.5 + 0.5*I would be of type double complex and
0.5F + 0.5F«I of £loat complex. The compiler implicitly convertsC the result
to the wider of the types if we mix, for example, £loat and double literals for real
and imaginary parts. Another way to encode complex constants is by using complex
literals. These are floating point literals with an extra i, for example 0.51i or 0.5IF.
Although widely supported nowadays, unfortunately, this form of literals is not (yet)
standardized, so you may not rely on it.

CHALLENGE 5 (complex numbers). Canyou extend the derivative (Challenge 2) to the complex
domain: that is, functions that receive and return double complex values?

5.4. Implicit conversions. As we have seen in the examples, the type of an operand
has an influence on the type of an operator expression, such as —1 or —1U. Whereas
the first is a signed int, the second is an unsigned int. The latter might be par-
ticularly surprising for beginners because an unsigned int has no negative values, so
the value of —1U is a large positive integer.

Takeaway 5.4 #1  Unary — and + have the type of their promoted operand.

So, these operators are examples where the type usually does not change. In cases
where they do change, we have to rely on C’s strategy to do implicit conversions: that is, to
move a value with a specific type to one that has a desired type. Consider the following
examples, again under the assumption that —2,147,483,648 and 2,147,483,647 are
the minimal and maximal values of a signed int, respectively:

I ]
‘ double a = 1; // Harmless; value fits type ‘
‘ signed short b -1; // Harmless; value fits type ‘
‘ signed int @ 0x8000”0000; // Dangerous; value too big for type ‘

18We see what macros are really about in subsection 5.6.8. For now, just take them as names to which

the compiler has associated some specific property.
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‘ signed int d = -0x8000"0000; // Dangerous; value too big for type

‘ signed int e = —2’147'483’648; // Harmless; value fits type

\ unsigned short g = 0x8000’0000; // Loses information; has value 0

L |

Here, the initializations of a and b are harmless. The respective values are well in
the range of the desired types, so the C compiler can convert them silently.

The next two conversions for c and d are problematic. As we have seen, 0x8000’ 0000
is of type unsigned int and does not fit into a signed int. So c receives a value
that is implementation-defined, and we have to know what our platform has decided to
do in such cases. It could just reuse the bit pattern of the value on the right or termi-
nate the program. As for all implementation-defined features, which solution is chosen
should be documented by your platform, but be aware that this can change with new
versions of your compiler or may be switched by compiler arguments.

For the case of d, the situation is even more complicated. 0x8000’ 0000 has the
value 2,147,483,648, and we might expect that ~0x80007 0000 is just the negative
value. But since effectively -0x80007 0000 is again 2,147,483,648, the same problem
arises as for ¢.[Fxs 191

Then, e is harmless again. This is because we used -2’ 1477 483’ 648, a negated
decimal literal which has type signed long and whose value effectively is as intended
(shown earlier). Since this value fits into a signed int, the conversion can be done
with no problem.

The last example for g is ambiguous in its consequences. A value that is too large
for an unsigned type is converted according to the modulus. Here in particular, if we
assume that the maximum value for unsigned short is 2% — 1, the resulting value
is 0. Whether or not such a “narrowing” conversion is the desired outcome is often

difficult to tell.
Takeaway 5.4 #2  Avoid narrowing conversions.

Takeaway 5.4 #3 Don’t use narrow types in arithmeltic.

The type rules become even more complicated for operators that have two operands,
such as addition and multiplication because these then may have different types. Here
are some examples of operations that involve floating-point types:

1 + 0.0 // Harmless; double

1 + I // Harmless; complex float

INT MAX + 0.0F // May lose precision; float

INT MAX + I // May lose precision; complex float
INT MAX + 0.0 // Usually harmless; double

Here, the first two examples are harmless: the value of the integer literal 1 fits well
into the type double or complex float. In fact, for most such mixed operations,
whenever the range of one type fits into the range of the other, the result has the type
of the wider range.

The next two are problematic because INT_MAX, the maximal value for signed
int, usually will not fit into a £loat or complex float. For example, on my ma-
chine, INT MAX + 0. 0F is the same as INT_MAX + 1.O0F. The last line shows that
for an operation with double, this would work fine on most platforms. Nevertheless,
on an existing or future platform where int is 64 bit, an analogous problem with the
precision could occur.

Because there is no strict inclusion of value ranges for integer types, deducing the
type of an operation that mixes signed and unsigned values can be nasty:

[Exs 19]ypder the assumption that the maximum value for unsigned int is OxFFFF’ FFFF, prove that
-0x800070000 == 0x8000"0000.
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=1 < 0 // True, harmless, same signedness

-1L. < 0 // True, harmless, same signedness

-1U < 0U // False, harmless, same signedness

=1 < 0U // False, dangerous, mixed signedness

-1U < 0 // False, dangerous, mixed signedness

-1L < 0U // Depends, dangerous, same or mixed signedness
-1LL < OUL // Depends, dangerous, same or mixed signedness

The first three comparisons are harmless because even if they mix operands of different
types, they do not mix signedness. For these cases, since the ranges of possible values
nicely contain each other, C simply converts the other type to the wider one and does
the comparison there.

The next two cases are unambiguous but perhaps not what a naive programmer
would expect. In fact, for both, all operands are converted to unsigned int. Thus,
both negated values are converted to large unsigned values, and the result of the com-
parison is false.

The last two comparisons are even more problematic. On platforms where

INT WIDTH < LONG_WIDTH,
0U is converted to 0L, and thus the first result is t rue. On other platforms with
INT_ WIDTH == LONG_WIDTH,

—1L is converted to —1U (that is, UINT_MAX), and thus the first comparison is false.
Analogous observations hold for the second comparison of the last two, but be aware
that there is a good chance the outcome of the two is not the same.

Examples like the last two comparisons can give rise to endless debates in favor of
or against signed or unsigned types, respectively. But they show only one thing: that
the semantics of mixing signed and unsigned operands is not always clear. There are
cases where either possible choice of an implicit conversion is problematic.

Takeaway 5.4 #4  _Avoid operations with operands of different signedness.
Takeaway 5.4 #5  Use unsigned types whenever you can.

Takeaway 5.4 #6  Chose your arithmetic types such that implicit conversions are harmless.

5.5. Initializers. We have seen (subsection 2.3) that the initializer is an important
part of an object definition. Initializers help us guarantee that a program execution is
always in a defined state so that whenever we access an object, it has a well-known value
that determines the state of the abstract machine.

Takeaway 5.5 #1 = All variables should be initialized.

The only exception to that rule should be made for code that must be highly op-
timized.? For most code that we are able to write so far, a modern compiler will be
able to trace the origin of a value to its last assignment or its initialization. Superfluous
initializations or assignments will simply be optimized out.

For scalar types such as integers and floating points, an initializer just contains an
expression that can be converted to that type. We have seen a lot of examples of that.
Optionally, such an initializer expression may be surrounded with {}. Here are some
examples:

208ince €28, even variable-length arrays (VLA; see subsection 6.1.8) may be initialized by a default
initializer.
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double a = 7.8;
double b = 2 * a;
double c = { 7.8 };
double d = { 0 };

Initializers for other types must have these {}. For example, array initializers con-
tain initializers for the different elements, each of which is followed by a comma:

double A[] = { 7.8, };
double B[3] = { 2 = A[O0], 7, 33, };
double C[] = { [0] =6, [3] =1, };
(0]
A double 7.8
[0] [1] [2]
B‘ double 15.6 I double 7.0 I double 33.0 ‘
(0] [1] [2] [3]
C‘ double 6.0 I double 0.0 I double 0.0 I double 1.0

As we have seen, if there is no length specification, the array is said to have an incom-
plete typeC. The type is then completed by the initializer to fully specify the length.
Here, A has only one element, whereas C has four. For the first two initializers, the ele-
ment to which the scalar initialization applies is deduced from the position of the scalar
in the list: for example, B[ 1] is initialized to 7. The form as for C is called designated
initializers. These are by far preferable since they make the code more robust against
small changes in declarations.

Takeaway 5.5 #2  Use designated initializers for all aggregate data types.

If you don’t know how to initialize a variable of type T, the default initializer”
Ta={1}

will always do.

Takeaway 5.5 #38 { } is a valid initializer for all objects.

This feature has only been introduced in C23; before that, we had to use {0}, and
there was a relatively complicated reasoning that made this work. This default initializer
may also be used for variable-length arrays (see subsection 6.1.3), which previously had
no initializer syntax.

In initializers, we often have to specify values that have a particular meaning for
the program.

5.6. Named constants. A common issue, even in small programs, is that they use
special values for some purposes that are textually repeated all over. If for one reason
or another this value changes, the program falls apart. Take an artificial setting as an
example where we have arrays of strings,g_1 on which we would like to perform some
operations:

¢ . . — . .
21This uses a pointer, type char const xconst, to refer to strings. We will see later how this particular
technique works.
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char constxconst bird[3] = {
"raven",
"magpie" ,
" jayll ,

bi

char constxconst pronoun|[3]
n

we",
"you",
"they",
bi
char const*const ordinal[3] = {
"first",
"second",
"third",
bi

for (unsigned i = 0; 1 < 3; ++1i)
printf ("Corvid,_%u_is_the_%s\n", i, bird[i]);

for (unsigned i = 0; i < 3; ++1)
printf ("$s_plural_pronoun_is_%$s\n", ordinal[i], pronoun[i]);

Here, we use the constant 3 in several places with three different “meanings” that
are not very correlated. For example, an addition to our set of corvids would require
two separate code changes. In a real setting, there might be many more places in the
code that depend on this particular value, and in a large code base, this can be very
tedious to maintain.

Takeaway 5.6 #1 _All constants with a particular meaning must be named.

It is equally important to distinguish constants that are equal but for which equality
is just a coincidence.

Takeaway 5.6 #2 Al constants with different meanings must be distinguished.

At the start, C had surprisingly little means to specify named constants, and its
terminology even caused a lot of confusion about which constructs effectively lead
to compile-time constants. So we first have to get the terminology straight (subsec-
tion 5.6.1) before we look into the only proper named constants that C provided until
C23: enumeration constants (subsection 5.6.2). The latter will help us to replace the
different versions of 3 in our example with something more explanatory. A second,
generic mechanism complements this feature with simple text replacement: macros
(subsection 5.6.3). Macros only lead to compile-time constants if their replacements

are composed of literals of base types, as we have seen. Finally we distinguish a concept
of unnamed temporary objects called compound literals (subsection 5.6.4) and C28’s
new constexpr objects that also can serve as proper named or unnamed constants
(subsection 5.6.5).

5.6.1. Read-only objects. Don’t confuse the term constant, which has a very specific
meaning in C, with objects that can’t be modified. For example, in the previous code,
bird, pronoun, and ordinal are not constants according to our terminology; they
are const-qualified objects. This qualifier® specifies that we don’t have the right to
change this object. For bird, neither the array entries nor the actual strings can be
modified, and your compiler should give you a diagnostic if you try to do so:

Takeaway 5.6.1 #1 _An object of const-qualified type is read-only.
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That doesn’t mean the compiler or run-time system may not perhaps change the
value of such an object: other parts of the program may see that object without the
qualification and change it. The fact that you cannot write the summary of your bank
account directly (but only read it) doesn’t mean it will remain constant over time.

There is another family of read-only objects that unfortunately are not protected
by their type from being modified: string literals.

Takeaway 5.6.1 #2  String literals are read-only.

If introduced today, the type of string literals would certainly be char const [1],
an array of const-qualified characters. Unfortunately, the const keyword was intro-
duced to the C language much later than string literals, and therefore it remained as it
is for backward compatibility.%

Arrays such as bird also use another technique to handle string literals. They use
a pointer” type, char constxconst, to “refer” to a string literal. A visualization of
such an array looks like this:

0] 1] [2]

bird char constxconst char const=xconst char constxconst

1 l 8

"raven" "magpie" "jay"

That is, the string literals themselves are not stored inside the array bird but in
some other place, and bird only refers to those places. We will see much later, in
subsections 6.2 and 11, how this mechanism works.

Since C23, there is another construct indicated by the keyword constexpr, that
results in read-only objects. But in contrast to objects that are simply const-qualified,
these are guaranteed to never change, and their value is known at compile time. The
main difference can be seen in the following example:

extern double const factor;
constexpr double 7 = 3.141’592’653'5897793"238’46;

The declaration of factor only tells us (and the compiler) that somewhere there
is a double object that we don’t have the right to change. When and where is value is
determined is unspecified. On the other hand, the value of 7 is given together with the
declaration and will be stable for the whole compilation of the program. We will see
constexpr in more detail later.23

5.6.2. Enumerations. C has asimple mechanism to name small integers as we needed

them in the example, called enumerations®:

enum corvid { magpie, raven, jay, corvid_num, };
char constxconst bird[corvid_num] = {

[raven] = "raven",

[magpie] = "magpie",

[Jayl = "jay",

bi

for (unsigned i = 0; i < corvid_num; ++1i)
printf ("Corvid_%u,_is, the_%s\n", i, bird[i]);

This declares a new integer type enum corvid for which we know four different
values. As you might have guessed, positional values start from 0 onward, so in our

22 A third class of read-only objects exist: temporary objects. We will see them later, in subsection 13.2.2.

99 ———

23Note also that using a non-Latin character such as 7 should be supported on modern platforms. Con-
sider upgrading to a newer one if your compiler does not support this.
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example we have raven with value 0, magpie with 1, jay with 2, and corvid_num
with 3. This last 3 is obviously the 8 we are interested in.

Takeaway 5.6.2 #1  Enumeration constants have either an explicit or a positional value.

[magpiel [raven] [Jay]

bird char constxconst char constxconst char constxrconst

! l 8

"magpie" "raven" "jay"

Notice that this uses a different order for the array entries than before, and this is
one of the advantages of the approach with enumerations: we do not have to manually
track the order we used in the array. The ordering that is fixed in the enumeration type
does that automatically.

Now, if we want to add another corvid, we just put it in the list, anywhere before
corvid_num.

LisTING 5.1. An enumeration type and related array of strings

enum corvid { magpie, raven, jay, chough, corvid_num, };
char constxconst bird[corvid_num] = {

[chough] = "chough",

[raven] = "raven",

[magpie] = "magpie",

[Jay] = "Jay",
}i

As for most other narrow types, there is not really much interest in declaring vari-
ables of an enumeration type as given here; for indexing and arithmetic, they would be
converted to signed or unsigned, anyway. Even the enumeration constants them-
selves aren’t necessarily of the enumeration type.

Takeaway 5.6.2 #2  If all enumeration constants of a simple enumeration type fit into signed
int, they have that type.

So for small values, the interest really lies in the constants, not in the newly cre-
ated type. We can thus name any signed int constant that we need, without even
providing a tag® for the type name:

| |
| enum { p0 = 1, pl = 2%p0, p2 = 2*pl, P3 = 2%p2, }; \

To define these constants, we can use integer constant expressionsC (ICE). Such
an ICE provides a compile-time integer value and is much restricted. Not only must its
value be determinable at compile time (no function call allowed), but also no evaluation
of an object must participate as an operand to the value:

signed const 042 = 42;
constexpr signed c42 = 42;
enum {
b42 = 42, // Ok: 42 is a literal.

c52 = 042 + 10, // Error: o042 is an object.

b52 = b42 + 10, // Ok: b42 is not an object.

d52 = c42 + 10, // Ok: c42 is a named constant.
}i

Here, 042 is an object, albeit const-qualified, so the expression for c52 is not an
“integer constant expression.” With c42, we see that constexpr, in turn, can be used
freely in such a context.
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Takeaway 5.6.2 #3  An integer consiant expression must only evaluate objects that are de-
clared with constexpr.

So, principally, an ICE may consist of any operations with integer literals, enumer-
ation constants, constexpr objects, aligno£?! and of £setof subexpressions, and
eventually some sizeof subexpressions.ﬁ

Before C23, even if the value was an ICE, to be able to use it to define an enumera-
tion constant, we had to ensure that the value fit into a signed int. This has changed
with C28.

Takeaway 5.6.2 #4  If enumeration constants do not fit into signed int, if possible, the
enumeration type is adjusted such that it can store all enumeration constants.

Takeaway 5.6.2 #5  If enumeration constants do not fit into signed int, the constants
have the enumeration type.

Note that it may actually happen that there is no type that can hold all the values
for the constants:

I ]
| enum toolarge { minimus = LLONG_MIN, maximus = ULLONG_MAX, }; \
! |
Unless the compiler finds an extended integer type that is wider than signed long
long, this line will likely not compile.
The fact that enumeration types are adjusted can be convenient when we are not

really interested in the type:

enum wide { minimal = LONG_MIN, maximal = LONG_MAX, };
typedef enum wide wide;

Here, it depends on the platform if long is wider than signed, so the underlying type
of wide may be either of them, depending on the circumstances. C23 also introduced
new syntax to force the underlying type to a specific one.

enum wider : long { minimer = LONG_MIN, maximer = LONG_MAX, };
typedef enum wider wider;

A colon followed by an integer type indicates the underlying type and also forces that
the enumeration constants have the type of enumeration, even if the values would fit
into signed:

enum narrow : unsigned char { zero, one, };
typedef enum narrow narrow;

The property that an enumeration type is adjusted such that it fits all its constants
could have surprising effects for the users of the type and should probably not be abused.
So it is preferable to specify the underlying integer type explicitly, whenever that is
possible.

Takeaway 5.6.2 #6  If the enumeration constants potentially do not all fit into signed int,
spectfy the underlying integer type of an enumeration type.

This is particularly important if the underlying type could be a signed or an un-
signed type, as in the following:

enum large { down = 0, up = OXFFFF'FFFF, }; // ambigouous, don’t use
typedef enum large large;

AUgince C23; previously _Alignof.
25We will handle the latter two concepts in subsections 12.7 and 12.1.
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Here, depending on the width of signed int, the constant 0OXFFFF’ FFFF could
have any of types signed, unsigned, signed long, unsigned long, signed
long long, or unsigned long long, and thus the underlying integer type could
become any of those. For an occasional reader, it would be better to clearly state the
intent:

enum eInt : signed int { dInt = 0, ulnt = OxXFFFF'FFFF, };

typedef enum eInt elnt;

enum eSig : typeof (4'2947967’295) { dSig = 0, uSig = 47294'967'295, };
typedef enum eSig eSig;

enum e32 : uint32_t { d32 = 0, u32 = OXFFFF'FFFF, };

typedef enum e32 e32;

The first definition for eInt would only compile if signed int has a width of
more than 32. The second for eS1ig uses the typeof feature (which will be introduced
in more detail much later in section 18) to state explicitly that we want the type to be
the one of the decimal constant. That type is always signed. The third for €32 uses the
type definition uint32_t (see following discussion) to indicate that the sought type is
an unsigned type with a width of at least 32.

5.6.3. Macros. Prior to C238, there was no other mechanism to declare constants in
the strict sense of the C language of other types than signed int. Instead, C proposes
another powerful mechanism that introduces textual replacement of the program code:
macros©. A macro is introduced by a preprocessor” #define:

I
‘# define M _PI 3.141'592'653"589’7937238"46
!

This macro definition has the effect that the identifier M_P1I is replaced in the fol-
lowing program code by the double constant. Such a macro definition consists of five
different parts:

(1) A starting # character that must be the first non-blank character on the line
(2) The keyword define

(3) An identifier that is to be declared, here M_P1I

(4) The replacement text, here 3.1417 592’ 6537589’ 793" 238" 46

(5) A terminating newline character

With this trick, we can declare textual replacement for constants of unsigned, size_t,
and double. In fact, the implementation-imposed bound of size_t, SIZE_MAX, is
defined, as well as many of the other system features we have already seen:

EXIT_SUCCESS, not_eq, complex...

Here, in this book, such C standard macros are generally printed in dark red.

The spelling of these examples from the C standard is not representative for the
conventions that are generally used in a large majority of software projects. Most of
them have quite restrictive rules such that macros visually stick out from their sur-
roundings.

Takeaway 5.6.8 #1  Macro names are in all caps.

Only deviate from that rule if you have good reasons, in particular not before you
reach level 3.

5.6.4. Compound literals. For types that don’t have literals that describe their con-
stants, things get even more complicated. For macros, we have to use compound literals®
on the replacement side. Such a compound literal has the form

i (T){ INIT } i

That is, a type in parentheses, followed by an initializer. Here’s an example:
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# define CORVID_NAME /*x/ \
(char constxconst[corvid_num]) { \
[chough] = "chough", \
[raven] = "raven", \
[magpie] = "magpie", \
[Jayl = "jay", \

}

With that, we could leave out the bird array and rewrite our £or loop:

for (unsigned i = 0; i < corvid_num; ++i)
printf ("Corvid_%u_is_the_%s\n", i, CORVID_NAME[i]);

Whereas compound literals in macro definitions can help us declare something that
behaves similarly to a constant of a chosen type, it isn’t a constant in the sense that we
have previously discussed.

Takeaway 5.6.4 #1 A compound literal defines an object.

Overall, this form of macro has some pitfalls:

e Compound literals, as introduced so far, aren’t suitable for ICE.

e For our purpose here, to declare named constants, the type T should be
const-qualified”. This ensures that the optimizer has a bit more slack to
generate good binary code for such a macro replacement.

e There must be at least one space character between the macro name and the
() of the compound literal, here indicated by the /*x/ comment. Other-
wise, this would be interpreted as the start of a definition of a function-like
macro. We will see these much later.

e A backspace character \ at the very end of the line can be used to continue the
macro definition to the next line.

e There must be no ; at the end of the macro definition. Remember, it is all
just text replacement.

Takeaway 5.6.4 #2  Don’t hide a terminating semicolon inside a macro.

Also, for readability of macros, please pity the poor occasional reader of your code.

Takeaway 5.6.4 #3  Right-indent continuation markers for macros to the same column.

As you can see in the example, this helps to visualize the entire spread of the macro
definition easily.

5.6.5. The constexpr construct. All these techniques are not very helpful in con-
texts in which, say, we would need named constants for complicated types that are to be
used as an initializer in file scope. Here, an initializer has to be a constant expression.
C23 introduced the constexpr construct, which may be applied to declarations and
also to compound literals. A declaration equivalent to our previously introduced macro
M_PT is the following:

I
| constexpr double m = 3.141’592’ 653’589’ 793238 46; \
L

Using such a constexpr has the advantage that the constant is checked at compile
time where it is declared: a conversion that leads to a change of value is an error. For
example,

|
‘constexpr unsigned nflat = 3.141’592’6537589’793"238’46; // error ‘
!
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results in a compiler error because significant digits after the decimal point on the
right are lost when converting to the type unsigned on the left.

Takeaway 5.6.5 #1  The initializer of a constexpr must fit exactly.

constexpr can also be used for compound literals:

# define CORVID_NAMES /x*x/ \
(constexpr char([8] [corvid_num]) { \
[chough] = "chough", \
[raven] = "raven", \
[magpie] = "magpie", \
[Jayl = "Jay", \

Observe that here we changed to an array of corvid_num arrays of 8 characters
each. Each of these 8 character arrays is initialized with the indicated values and then
is filled with zeros to the end. So, schematically, the compound literal as a whole looks

as follows:
[magpie] [raven] [Jay] [chough]

‘ char const[8] I char const[8] I char const[8] I char const([8] ‘

For example, the first of these array elements, which is itself an array, looks like
this:

0] [1] [2] [3]
‘ char const 'm’ I char const ’a’ I char const ’g’ I char const ’p’ ‘~~
[4] [5] 16] [71
--‘ char const ’i’ I char const ‘e’ I char const 0 I char const 0 ‘

For all these characters, by using constexpr, the compiler now knows that they
are not intended to change during execution, and the const qualification is implied.
That knowledge could be used to make our program more efficient, either faster (in
some sense) or by using less space. If the array, hidden behind the macro, is indexed
directly (such as in CORVID_NAMES [raven]), the whole array is not needed. Only
the corresponding string literal (here "raven™) could be used directly by the compiler.
Even more, the compiler would be allowed to use the same string literal "raven" for
all the occurrences with index raven, the same for all with magpie, etc.

5.7. Binary representions. The binary representation of a type is a model that de-
scribes the possible values for that type. It is not the same as the in-memory object
representation that describes the more or less physical storage of values of a given type.

Takeaway 5.7 #1  The same value may have different binary representations.

5.7.1. Unsigned integers. We have seen that unsigned integer types are those arith-
metic types for which the standard arithmetic operations have a nice, closed mathemat-
ical description, as we have seen in takeaway 4.2.2 #4 they are closed under arithmetic
operations. In mathematical terms, they implement a ring, Z y, the set of integers mod-
ulo some number N. The values that are representable are 0, ..., N — 1. The max-
imum value N — 1 completely determines such an unsigned integer type and is made
available through a macro with terminating _MAX in the name. For the basic unsigned
integer types, these are UINT_MAX, ULONG_MAX, and ULLONG_MAX , and they are
provided through <1imits.h>. As we have seen, the one for size_t is SIZE_MAX
from <stdint.h>.

The binary representation for non-negative integer values is always exactly what
the term indicates: such a number is represented by binary digits bo, b1, . . ., b,—1 called

<limits.h>

<stdint.h>



66 1. ACQUAINTANCE

TaBLE 5.5. Bounds for scalar types used in this book

Name [min, max] Where Typical

size t [0, SIZE_MAX] <stdint.h> [0, 2% — 1], w = 82 or 64
double [+DBL_MIN, +DBL_MAX | <float.h> [£27%72 +9%] w = 1,024
signed [INT MIN, INT_MAX] <limits.h> [-2v, 2% — 1], w =31
unsigned [0, UINT MAX] <limits.h> [0,2¢ = 1],w =32

bool [false, true] <stdbool.h> | [0, 1]

ptrdiff t [PTRDIFF_MIN, PTRDIFF_MAX ]| | <stdint.h> [-29,2% — 1], w =381 or 63
char [CHAR_MIN, CHAR MAX ] <limits.h> [-128,127] or [0, 255]
unsigned char | [0, UCHAR_MAX | <limits.h> [0,255]

bitsC. Each of the bits has a value of 0 or 1. The value of such a number is computed
as

r—1
(1) > e,
i=0

The value p in that binary representation is called the precision” of the underlying
type, which, for unsigned types, is also the same as the width. For all unsigned types,
these values can be determined from the corresponding macro, such as UINT_WIDTH,
ULONG_WIDTH, and ULLONG_WIDTH . Bit by is called the least-significant bitC, LSB,
and b,_ is the most-significant bit¢ (MSB).

Of the bits b; that are 1, the one with minimal index 7 is called the least-significant
bit set®, and the one with the highest index is the most-significant bit set®. For exam-
ple, for an unsigned type with p = 16, the value 240 would have by = 1, b5 = 1, b = 1,
and b7 = 1. All other bits of the binary representation are 0, the least-significant bit set
i is by, and the most-significant bit set is b7. From (1), we see immediately that 27 is the
first value that cannot be represented with the type. Thus, N = 2 and the following
observation holds.

Takeaway 5.7.1 #1  The maximum value of any integer type is of the form 20 — 1.

Observe that for this discussion of the representation of non-negative values, we
haven’t argued about the signedness of the type. These rules apply equally to signed
and unsigned types. Only for unsigned types, we are lucky, and what we have said so
far completely sufhices to describe such an unsigned type.

Takeaway 5.7.1 #2  Arithmetic on an unsigned integer type is determined by its precision.

Finally, table 5.5 shows the bounds of some of the commonly used scalars through-
out this book.

5.7.2. Bit sets and bitwise operators. This simple binary representation of unsigned
types allows us to use them for another purpose that is not directly related to arithmetic:
as bit sets. A bit set is a different interpretation of an unsigned value, where we assume
that it represents a subset of the base set /" = {0, ..., p — 1} and where we take element
i to be member of the set, if the bit d; is present.

There are three binary operators that operate on bit sets: /, & and ~. They
represent the set union A U B, set intersection A N B, and symmetric difference AAB, re-
spectively. For an example, let us choose 4 = 240, representing {4, 5, 6, 7}, and
B = 287, the bit set {0, 1, 2, 8, 4, 8}; see table 5.6. For the result of these opera-
tions, the total size of the base set, and thus the precision p, is not needed. As for the
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TaBLE 5.6. Effects of bitwise operators

Bitop | Value Hex bis...bg by ... by Set op | Set
\Y% 65,535 | OXFFFF | 0b11111111711111111 {0,1,2,8,4,5,6,7,8,9, 10,
11,12, 13, 14, 15}
A 240 | 0x00F0 | 0b00000000" 11110000 ,5,6,7}

{4
~A 65,295 | OXFFOF | 0b11111111700001111 | /'\A4 | {0,1,2,3,8,9, 10,

11,12, 13, 14, 15}

-A | 65,296 | 0XFF10 | 0b11111111’ 00010000 {4, 8,9, 10,
11,12, 13, 14, 15}
B 287 | 0x011F | 0b00000001’ 00011111 {0,1,2,38,4, 8
AlB 511 | 0x01FF | 0b000000017 11111111 | AUB | {0,1,2,38,4,5,6,7, 8}
A&B 16 | 0x0010 | 0b00000000’ 00010000 | ANB | {4}
A™B 495 | 0x01EF | 0b00000001711101111 | AAB | {0,1,2,8,5,6,7, 8}

arithmetic operators, there are corresponding assignment operators &=, /=, and "=,
respe Ctivcly. [Exs 26][Exs 27][Exs 28][Exs 29]

There is yet another operator that operates on the bits of the value: the complement
operator ~. The complement ~A would have value 65295 and would correspond to the
set {0,1,2,3,8,9,10, 11, 12, 13, 14, 15}. This bit complement always depends on
the precision p of the type.[Fxs 801Exs31]

All of these operators can be written with identifiers: bitor, bitand, xor, or_egq,
and_egq, xor_egq, and compl if you include header <iso646.h>. A typical usage
of bit sets is for flags, variables that control certain settings of a program:

enum corvid { magpie, raven, jay, chough, corvid_num, };
#define FLOCK_MAGPIE 1U
#define FLOCK_RAVEN 2U
#define FLOCK_JAY 4U
#define FLOCK_CHOUGH 8U
#define FLOCK_EMPTY 0U
#define FLOCK_FULL 15U

int main (void) {
unsigned flock = FLOCK_EMPTY;

if (something) flock |= FLOCK_JAY;

if (flock&FLOCK_CHOUGH)
do_something_chough_specific (flock) ;

}

Here, the constants for each type of corvid are a power of two, so they have exactly one
bit set in their binary representation. Membership in a flock can then be handled
through the operators: |= adds a corvid to flock, and & with one of the constants
tests whether a particular corvid is present.

[Exs 2615w that 4 \ B can be computed by A ~ (A&B) .
[Exs 271G how that v + 1 is 0.
[Exs 28]Show that A~B is equivalent to (A - (A&B)) + (B - (A&B)) andA + B - 2« (A&B).
[Exs 291Ghow that A | B is equivalent to A + B - (A&B).
[Exs 801Show that ~B can be computed by V. - B.
[Exs 311Show that =B = ~B + 1.

<iso0646.h>
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Observe the similarity between operators & and && or | and | |. If we see each
of the bits b; of an unsigned as a truth value, & performs the logical and of all bits of
its arguments simultaneously. This is a nice analogy that should help you memorize
the particular spelling of these operators. On the other hand, keep in mind that the
operators | | and && have short-circuit evaluation, so be sure to distinguish them clearly
from the bit operators.

Since C23, another set of bit operations is provided through the <stdbit.h>
header. These include the functionality to count the bits with value 1 (the size of a set)
with stde_count_ones, to detect whether there is exactly one bit with value 1 (if a
set is a singleton) with stdc_has_single_bit to provide the bit with the highest
number that holds the value 1 with stde_bit_width or to return the singleton set
with the highest numbered element stde_bit_floor. Since this header is new with
C23, your platform might not yet have it. Another new feature is the preprocessor test
__has_include, which you can use to query whether a header file can be found or
not:

#if !_ has_include (<stdbit.h>)
# error "this_file_needs_the_<stdbit.h>_header"
#endif

5.7.8. Shift operators. The next set of operators builds a bridge between interpreta-
tion of unsigned values as numbers and as bit sets. A left-shift operation << corresponds
to the multiplication of the numerical value by the corresponding power of two. For
example, for 4 = 240, the set {4, 5,6, 7}, 2 << 2is 240 - 22 = 240 - 4 = 960, which
represents the set {6, 7, 8, 9}. Resulting bits that don’t fit into the binary representa-
tion for the type are simply omitted. In our example, A << 9 would correspond to set
{13, 14, 15, 16} (and value 122880), but since there is no bit 16, the resulting set is
{13, 14, 15}, value 57344.

Thus, for such a shift operation, the precision p is again important. Not only are
bits that don’t fit dropped, but p also restricts the possible values of the operand on the
right.

Takeaway 5.7.8 #1  The second operand of a shift operation must be less than the precision.

There is an analogous right-shift operation >> that shifts the binary representation
toward the less-significant bits. Analogously, this corresponds to an integer division by
a power of 2. Bits in positions less than or equal to the shift value are omitted from the
result. Observe that for this operation, the precision of the type isn’t important.Fxs 32
There are also corresponding assignment operators <<=and >>=.

The primary use of the left-shift operator << is specifying powers of 2. In our
example, we can now replace the #defines:

#define FLOCK_MAGPIE (1U << magpie)
#define FLOCK_RAVEN (1U << raven)

#define FLOCK_JAY (1U << jay)

#define FLOCK_CHOUGH (1U << chough)
#define FLOCK_EMPTY ouU

#define FLOCK_FULL ((1U << corvid_num)-1)

This makes the example more robust against changes to the enumeration.
5.7.4. Boolean values. The Boolean data type in C is also considered an unsigned
type. Remember that it has only values false and true, corresponding to 0 and 1,

P vs 397 . « » . . i
[Exs 32IShow that the bits that are “lost” in an operation x>>n correspond to the remainder

x % (1ULL << n).
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so there are no negative values. Before C23, the names boolﬁ as well as the constants
false and true only came through the inclusion of <stdbool.h>. If you have to
maintain an old code base or have to ensure backwards compatibility for older systems,
you should still use that include; on systems that don’t need it, it shouldn’t cause any
harm.

Treating bool as an unsigned type is a stretch of the concept. Assignment to a
variable of that type doesn’t follow the modulus rule of takeaway 4.2.2 #3, but a special
rule for Boolean values (takeaway 3.1 #1).

You will probably rarely need bool variables. They are only useful if you want
to ensure that the value is always reduced to false or true on assignment. Early
versions of C didn’t have a Boolean type, and unfortunately many experienced C pro-
grammers still don’t use it.

5.7.5. Signedintegers. Signed types are a bit more complicated than unsigned types.

A C implementation has to decide about two points:

e What happens on arithmetic overflow?
e How is the sign of a signed type represented?

Signed and unsigned types come in pairs according to their integer rank, with the no-
table two exceptions from table 5.1: char and bool. The binary representation of the
signed type is constrained by the inclusion diagram that we previously saw.

Takeaway 5.7.5 #1  Positive values are represented independently from signedness.

Or, stated otherwise, a positive value with a signed type has the same representation
as in the corresponding unsigned type. That is why the maximum value for any integer
type can be expressed so easily (takeaway 5.7.1 #1): signed types also have a precision,
p, that determines the maximum value of the type.

The next thing the standard prescribes is that signed types have one additional
bit, the sign bit". If it is 0, we have a positive value; if it is 1, the value is negative.
Historically, there have been different concepts of how such a sign bit can be used to
obtain a negative number, but C23 clarified that such that nowadays only the two’s
complement® is allowed for the sign representations®.

Previously, there also had been sign and magnitude® and ones’ complement®, but
nowadays they only have historical or exotic relevance: for sign and magnitude, the
magnitude is taken as positive values, and the sign bit simply specifies that there is a
minus sign. Ones’ complement takes the corresponding positive value and comple-
ments all bits. Both representations have the disadvantage that two values evaluate to
0: there is a positive and a negative 0. Because there is no active platform that has these
representations, they have now been removed from the C standard; you should only
encounter them in history books or in maliciously intended recruitment tests.

The two’s complement representation performs exactly the same arithmetic as we
have seen for unsigned types, but the upper half of unsigned values (those with a high-
order bit of 1) is interpreted as being negative. The following two functions are basically
all that is needed to interpret unsigned values as signed values:

bool is_negative (unsigned a) {
constexpr unsigned int_max = UINT_MAX/2;
return a > int_max;
}
bool is_signed_less (unsigned a, unsigned b) {
if (is_negative(a) != is_negative (b)) return a > b;
else return a < b;

33Prcvi0us]y, the basic type was called _Bool. For backward compatibility with older sources, that name
is still maintained, but you should not use it in new code.

<stdbool.h>
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TaBLE 5.7. Negation for 16-bit unsigned integer types

Op Value bys bo
A 240 | 0b000000007 11110000
~A | 65,295 | 0b11111111700001111
+1 1| 0b00000000” 00000001
-A | 65,296 | 0Ob11111111700010000

Table 5.7 shows an example of how the negative of value 240 can be constructed.
For unsigned types, - can be computed as ~a + 1.[Fxs 34ES3SIES3O Ty is comple-
ment representation performs exactly the same bit operation for signed types as for
unsigned types. It only interprets representations that have the high-order bit as being
negative.

When done that way, signed integer arithmetic will again behave more or less
nicely. Unfortunately, there is a pitfall that makes the outcome of signed arithmetic
difficult to predict: overflow. Where unsigned values are forced to wrap around, the
behavior of a signed overflow is undefined”. The following two loops look much the
same:

for (unsigned i = 1; i; ++i) do_something();
for ( signed i = 1; i; ++1i) do_something();

We know what happens for the first loop: the counter is incremented up to UINT_MAX
and then wraps around to 0. All of this may take some time, but after UINT_MAX-1
iterations, the loop stops because i will have reached 0.

For the second loop, everything looks similar. But because here the behavior of
overflow is undefined, the compiler is allowed to pretend that it will never happen. Since
it also knows that the value at the start is positive, it may assume that i, as long as the
program has defined behavior, is never negative or 0. The as-if rule (takeaway 5.1.3 #3)
allows it to optimize the second loop to

1 while (true) do_something(); 1
That’s right, an infinite loop. The only possibility that the code is valid is that do_something
has a side effect so the program execution makes progress. Also, it may assume that the
point after the loop is never reached, either the loop runs continues indefinitively or
because it will reach an internal state that terminates execution. In section 15.4, we will
discuss such situations in more detail.

Takeaway 5.7.5 #2  Once the abstract state machine reaches an undefined state, no further
assumption about the continuation of the execution can be made.

Not only that, the compiler is allowed to do what it pleases for the operation itself
(“Undefined? So, let’s define it”), but it may also assume that it will never reach such a
state and draw conclusions from that.

Commonly, a program that has reached an undefined state is referred to as “having”
or “showing” undefined behavior”. This wording is a bit unfortunate; in many such
cases, a program does not “show” any visible signs of weirdness. In the contrary, bad
things will be going on that you will not even notice for a long time.

Takeaway 5.7.5 #3 It is your responsibility to avoid undefined behavior of all operations.

[Exs 34]ppove that for unsigned arithmetic, A + ~A is the maximum value.

[Exs 85]pyrove that for unsigned arithmetic, A + ~Ais —1.

[Exs 861pyove that for unsigned arithmetic, A + (~A + 1) == 0.
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What makes things even worse is that on some platforms with some standard com-
piler options, the execution will just look right. Since the behavior is undefined, on
such a platform, signed integer arithmetic might turn out to be basically the same as
unsigned. But changing the platform, the compiler, or some options can change that.
Suddenly, your program that worked for years crashes out of nowhere.

In the sequel, we will avoid talking about undefined behavior and generally refer
to program failure because that is what is important for your program. Such a failure is,
in general, unreliable (often referred to as byzantine); that is, none of the components
of the execution are reliable anymore. The possible range of effects includes it going
unnoticed to doing real harm to your platform or your data. We will dedicate a whole
section of the book to program failure (section 15).

Takeaway 5.7.5 #4  If the program state reaches an operation with undefined behavior, the
execution has failed.

Basically, what we have discussed up to this section always had well-defined behav-
ior, so the abstract state machine is always in a well-defined state. Signed arithmetic
changes this, so as long as you don’t need it, avoid it. We say that a program performs
a trap® (or just traps) if it is terminated abruptly before its usual end.

Takeaway 5.7.5 #5  Signed arithmetic may trap badly.

One of the things that might already overflow for signed types is negation. We have
seen that INT_MAX has all bits with the exception of the sign bit set to 1. INT_MIN
then has the “next” representation: the sign bit set to 1 and all other bits set to 0. The
corresponding value is not -INT_max,Fxs 871

Takeaway 5.7.5 #6 INT MIN < -INT MAX

Or, stated otherwise, the positive value —INT_MIN is out of bounds since the value
of the operation is larger than INT_MAX.

Takeaway 5.7.5 #7  Negation may overflow for signed arithmetic.

For signed types, bit operations work with the binary representation. The shift
operations then become really messy. The semantics of what such an operation is for a
negative value is not clear.

Takeaway 5.7.5 #8  Use unsigned types for bit operations.

5.7.6. Fized-widih integer types. The width (and thus the precision) of the integer
types that we have seen so far can be inspected by using macros from <limits.h>, <limits.h>
such as UINT_WIDTH and LONG_WIDTH. The C standard only guarantees a minimal
width for them. For the unsigned types, these are

type minimal precision
bool 1

unsigned char 8

unsigned short 16

unsigned 16

unsigned long 32

unsigned long long | 64

[Exs 37IShow that INT _MIN+INT MAXis — 1.
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Under usual circumstances, these guarantees should give you enough information;
but under some technical constraints, such guarantees might not be suflicient, or you
might want to emphasize a particular precision. This may be the case if you want to
use an unsigned quantity to represent a bit set of a known maximal size. If you know
that 32 bits will suffice for your set, depending on your platform, you might want to
choose unsigned (if it happens to have 82 bits) or unsigned long (if unsigned
is too narrow) to represent it.

The C standard provides names for exact-width integer types in <stdint .h>. As
the name indicates, they are of an exact prescribed “width,” which for provided unsigned
types is guaranteed to be the same as their precision.

Takeaway 5.7.6 #1  If the type uintN_t is provided, it is an unsigned integer type with
exactly N bits of width and precision.

Takeaway 5.7.6 #2  Ifthe type int N_t is provided, it is signed and has a width of exactly
N bits and a precision of N — 1.

The typedef must be provided if types with the corresponding properties cxist.ﬁ
Takeaway 5.7.6 #3  If the types with the required properties exist for a value N, int N_t
and uintN_t must be provided.

Nowadays, platforms usually provide uint8_t, uint16_t, uint32_t, and
uint64_t unsigned types and int8_t, int16_t, int32_t, and int64_t signed
types, with more types being added, such as uint128_t and int128_t. Their pres-
ence and bounds can be tested with the macros UINT8_WIDTH, ..., UINT128_ WIDTH
for unsigned types and INT8_WIDTH, ..., INT128_WIDTH, respectively. s 39

To encode literals of the requested type, there are the macros UINT8_C, ...,
UINT64_C, and INT8_C, ..., INT128_C, respectively. For example, on platforms
where uint64_t is unsigned long, INT64_C (1) usually expands to something
like 1UL.

Takeaway 5.7.6 #4  For any of the fixed-width types that are provided, width _WIDTH,
minimum _MIN (only signed), maximum _MAX, and literals _C macros are
provided, too.

Since we cannot know the type behind such a fixed-width type, it would be difficult
to guess the correct format specifier to use for print £ and friends. Since C23, the
"wN " length specifiers can be used for this task, where N is the width of the type:**

uint32_t n = 78;
int64_t big = (-UINT64_C(1l))>>1; // Same value as INT64_MAX
printf ("n_is_%w32u, _and _big is_%w64d\n", n, big);

The availability of the width macros (and some other specification tricks) since
C23 makes it possible that types can be provided that cannot even be fully handled by
the macro-preprocessor. In particular, most modern desktop computers have hard-
ware support for 128 bit types, and these can now be exposed to C integer types as
int128_t and uint128_t. This can be particularly interesting if you have to han-
dle large bit sets:

38Before (€23, this was only guaranteed for values 8, 16, 82, and 64. Note that the only types that are
guaranteed to exist then are uint N_t and int N_t for N that equals CHAR_BITS, even on platforms
where CHAR_BITS is not 8.

[Exs 39]p¢ they exist, the values of all these macros are prescribed by the properties of the types. Think of a

closed formulas in N for these values.

4Ol’t’cvious]y, only macro substitutes were provided by the header <inttypes.h>. For example, for
N = 64, there are PRIb64, PRId64, PRIi64, PRIo64, PRIu64, PRIx64, and PRIX64, [or print£f

o o

formats "$b", "$d", "%i", "%o", "Su", "$x" and "%X", respectively.
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#if ULLONG_WIDTH < UINT128_ WIDTH // don’t use UINT128_MAX
typedef uintl28_t wideType;

#else

typedef unsigned long long wideType;

#endif

The width is guaranteed to be a relatively small number, so it will always be possible to
provide preprocessor conditionals with that.

5.7.7. Bit-precise integer types. The exact-width integer types that we have seen pre-
viously only exist for a specific number of bits, generally only for powers of two. For
quantities that should fit into a precise number of bits C23 introduced bit-precise inte-
ger types. They are specified with the _BitInt keyword:

unsigned _BitInt (3) u3 = 7wbu; // values 0, «.., 3, .. ,7
signed _BitInt (3) s3 3wb; // values -4, ..., 0, ..., 3
_BitInt (3) s3 3wb; // same

Here we see that these types also have literals, namely number literals that have
suffixes of wb or WB, possibly combined with u or U, in their suffix. These have the
particularity that they have the type with the least width that can represent the value.
For example,

e 7wbu needs 3 bits to represent the value 7 and is unsigned, so the type is
unsigned _BitInt (3).

e 3wb needs 2 bits for the value 8 and reserves 1 bit for the sign, so it has type
signed _BitInt (3).

e 3wbu needs 2 bits for the value but doesn’t need a sign bit, so it has type
signed _BitInt (2).

These types always compute within the maximal width of the operands. For example,
in

i u3 + lwbu
L |

the first operand has a width of 8 and the second, a width of 1. So, the result of the
operation has type unsigned _BitInt (3), and for our choice of values, the math-
ematical result 8 of the addition wraps around for a final value of 0.

One possible use for these types is for specific constants that we want to have for a
certain width:

constexpr unsigned _BitInt (3) max3u = -1; // 0blll

constexpr unsigned _BitInt (4) max4u = -1; // 0bl111
constexpr unsigned _BitInt (4) high4u= max4u - max3u; // 0b1000
constexpr signed _BitInt (4) max4s = max3u; // 0b0111
constexpr signed _BitInt (4) minds = ~max4s; // 0b1000

The types exist for all widths from 1 (for unsigned types) or 2 (for signed types)
up to the value BITINT MAXWIDTH, defined in <1imits.h>; this maximal width is
always greater than or equal to the width of unsigned long long, ULLONG_WIDTH.
This allows us to specify all integer literals with exact value and signedness. For exam-
ple, the following monster is a signed integer literal with a precision of 127 bit and thus
of type _BitInt (128):

‘ Ox7FFF’'FFFF' FFFF/ FFFF’ FFFF/ FFFF/ FEFF’ FEFFFwb
L |

So if that type exists (BITINT_MAXWIDTH > 128), it can be used for the initializa-
tion of variables of type int128_t, even if literals for that type itself are not supported.

<limits.h>
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5.7.8. Floating-point data. Whereas integers come near the mathematical concepts
of N (unsigned) or Z (signed), floating-point types are close to R (non-complex) or C
(complex). The way they differ from these mathematical concepts is twofold. First,
there is a size restriction on what is presentable. This is similar to what we have seen
for integer types. The include file <f1oat .h>, for example, has constants DBL_MIN
and DBL_MAX that provide us with the minimal and maximal values for double. But
be aware that here, DBL_MIN is the smallest number that is strictly greater than 0. 0;
the smallest negative double value is ~-DBL_MAX.

But real numbers (R) have another difficulty when we want to represent them on a
physical system: they can have an unlimited expansion, such as the value %, which has
an endless repetition of the digit 3 in decimal representation, or the value of 7, which
is “transcendent” and so has an endless expansion in any representation and doesn’t
repeat in any way.

C and other programming languages deal with these difficulties by cutting off the
expansion. The position where the expansion is cut is “floating” (thus the name) and
depends on the magnitude of the number in question.

In a view that is a bit simplified, a floating-point value is computed from the fol-
lowing values:

s Sign (x1)
e Exponent, an integer
fis .., Jp values O or 1, the mantissa bits

For the exponent, we have e,;, < e < ;4. p, the number of bits in the mantissa,
is called precision. The floating-point value is then given by this formula:

4
5. 9¢ Zﬁﬂ‘k.
k=1

The values p, emin, and emax are type dependent and therefore not represented ex-
plicitly in each number. They can be obtained through macros such as DBL_MANT_DIG
(for p, typically 53) DBL_MIN_EXP (¢, —1’021), and DBL_MAX_EXP (¢4, 17024).

If we have, for example, a number that has s = —=1,¢ = =2, f; = 1, fo = 0, and
f3 = 1, its value is

9 -1 _9 _3 1 1 1 1 4+1 -5
1-27%- (127" + 277+ f327°) = 1~4- 2+8 = 1-4- 5 =39
which corresponds to the decimal value —0.156,25. From that calculation, we see also
that floating-point values are always representable as a fraction that has some power of
two in the denominator.,Fxs 411

An important thing to keep in mind with such floating-point representations is that

values can be cut off during intermediate computations.

Takeaway 5.7.8 #1  Floating-point operations are neither associative, commutative, nor dis-
tributive.

So, basically, floating points lose all the nice algebraic properties we are used to
when doing pure math. The problems that arise from that are particularly pronounced
if we operate with values that have very different orders of magnitude.[’*s 42 For ex-
ample, adding a very small floating-point value x with an exponent that is less than —p
to a value y > 1 just returns y again. As a consequence, it is really difficult to assert
without further investigation whether two computations have the “same” result. Such

[Exs 41ghow that all representable floating-point values with e > p are multiples of 2°77.

(Exs42Ipring  the results of the following  expressions: 1.0E-13 + 1.0E-13 and
(1.0E-13 + (1.0E-13 + 1.0)) - 1.0.
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investigations are often cutting-edge research questions, so we cannot expect to be able
to assert equality or inequality. We are only able to tell that the results are “close.”

Takeaway 5.7.8 #2  Never compare floating-point values for equality.

The representation of the complex types is straightforward and identical to an ar-
ray of two elements of the corresponding real floating-point type. To access the real
and imaginary part of a complex number, two type generic macros also come with the
header <tgmath.h>: creal and cimag. For any z of one of the three complex
types, we have that z == creal (z) + cimag(z) *I.E

43We will learn about such function-like macros in section 8.1.2.

<tgmath.h>
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Summary

C programs run in an abstract state machine that is mostly independent of the
specific computer where it is launched.

All basic C types are kinds of numbers, but not all of them can be used directly
for arithmetic.

e Values have a type and a binary representation.
e When necessary, types of values are implicitly converted to fit the needs of

particular places where they are used.

e Variables must be explicitly initialized before their first use.
e Integer computations give exact values as long as there is no overflow.
e Floating-point computations only give approximated results that are cut off

after a certain number of binary digits.
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6. Derived data types

This section covers

e Grouping objects into arrays

e Using pointers as opaque types

e Combining objects into structures

e Giving types new names with typedef

All other data types in C are derived from the basic types that we know now. There
are four strategies for deriving data types. Two of them are called aggregate data types
because they combine multiple instances of one or several other data types:

Arrays: These combine items that all have the same base type (subsection 6.1).

Structures: These combine items that may have different base types (subsection 6.3).
The two other strategies to derive data types are more involved:

Pointers: Entities that refer to an object in memory.
Pointers are by far the most involved concept, and we will delay a full discussion of
them to section 11. Here, in subsection 6.2, we will only discuss them as opaque data
types, without even mentioning the real purpose they fulfill.

Unions: These overlay items of different base types in the same memory location.
Unions require a deeper understanding of C’s memory model and are not of much
use in a programmer’s everyday life, so they are only introduced later, in subsec-
tion 12.2.

There is a fifth strategy that introduces new names for types: typedef (subsec-
tion 6.4). Unlike the previous four, this does not create a new type in C’s type system,
but only creates a new name for an existing type. In that way, it is similar to the defini-
tion of macros with #define, thus the choice for the keyword for this feature.

6.1. Arrays. Arrays allow us to group objects of the same type into an encapsu-
lating object. We will see pointer types later (section 11), but many people who come
to C are confused about arrays and pointers. This is completely normal. Arrays and
pointers are closely related in C, and to explain them, we face a chicken and egg problem.
Arrays look like pointers in many contexts, and pointers refer to array objects. We chose
an order of introduction that is perhaps unusual: we will start with arrays and stay with
them as long as possible before introducing pointers. This may seem “wrong” to some
of you, but remember that everything stated here must be viewed based on the as-if
rule (takeaway 5.1.3 #3). We will first describe arrays in a way that is consistent with
C’s assumptions about the abstract state machine.

Takeaway 6.1 #1  Arrays are not pointers.

Later, we will see how these two concepts relate, but for the moment, it is important
to read this section without prejudice about arrays; otherwise, you will delay your ascent
to a better understanding of C.

6.1.1. Array declaration. We have already seen how arrays are declared: by placing
something like [N] after another declaration. For example,

double a[4];
signed Db[N];




78 1. ACQUAINTANCE

Here, a comprises four subobjects of type double, and b comprises N of type signed.
We visualize arrays with diagrams like the following, with a sequence of boxes of their
base type:

(01 (1] (2] (31
a double 27 I double 27 I double 27 I double 27
(01 [N-1]
The dots --- here indicate that there may be an unknown number of similar items

between the two boxes.

The type that composes an array may itsell again be an array, forming a multidi-
mensional array” . The declarations for those become a bit more difficult to read since
[1 binds to the left. The following two declarations declare variables of exactly the
same type:

double C[M] [N];
double (D[M]) [N];

Both C and D are M objects of array type double [N]. This means we have to read a
nested array declaration from inside out to describe its structure:

(0] [M-1]
(0] (0] [0] [N-1) [M-1] [0] [M-1] [N-1]
C double 27 ‘---‘ double ?°? ‘ N ‘ double 2?7 ‘---‘ double ??

We also have seen how array elements are accessed and initialized, again with a pair
of []. In the previous example, a [0] is an object of double and can be used wherever
we want to use, for example, a simple variable. As we have seen, C[0] is itself an array,
$s0 C[0] [0], which is the same as (C[0]) [01], is also an object of type double.

Initializers can use designated initializers (also using [ ] notation) to pick the specific
position to which an initialization applies. The example code in listing 5.1 contains
such initializers. During development, designated initializers help to make our code
robust against small changes in array sizes or positions.

6.1.2. Array operations. Arrays are really just objects of a different type than we
have seen so far.

Takeaway 6.1.2 #1  An array in a condition evaluates to true.

The truth of that comes from the array decay operation, which we will see later.
Another important property is that we can’t evaluate arrays like other objects.

Takeaway 6.1.2 #2  There are array objects but no array values.

So, arrays can’t be operands for the value operators in table 4.1, and there is no
arithmetic declared on arrays themselves.

Takeaway 6.1.2 #3  Arrays can’t be compared.

Arrays also can’t be on the value side of the object operators in table 4.2. Most of
the object operators are likewise ruled out from having arrays as object operands, either
because they assume arithmetic or because they have a second value operand that would
have to be an array, too.

Takeaway 6.1.2 #4  Arrays can’t be assigned to.
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From table 4.2, we also know that there are only four operators left that work on
arrays as object operators. And we know the operator [].** The array decay operation,
the address operator &, and the sizeof operator will be introduced later.

6.1.8. Array length. There are two categories of arrays: constant-length arrays®
(CLAs) and variable-length arrays® (VLAs). The first are a concept that has been
present in C since the beginning; this feature is shared with many other programming
languages. The second was introduced in C99 and is relatively unique to C. It has some
restrictions on its usage.

Takeaway 6.1.8 #1  VLAs only can have default initializers.

Takeaway 6.1.8 #2  VLAs can’t be declared outside functions.

So let’s start at the other end and see which arrays are, in fact, FLAs, such that they
don’t fall under these restrictions.

Takeaway 6.1.3 #8  The length of an FLA is determined by an integer constant expression
or by an initializer.

For the first of these alternatives, the length is known at compile time through an
ICE (introduced in subsection 5.6.2). There is no type restriction for the ICE: any
integer type will do.

Takeaway 6.1.8 #4  An array-length specification must be strictly positive.

Another important special case leads to an FLA: when there is no length specifi-
cation at all. If the [] are left empty, the length of the array is determined from its
initializer, if any:

double E[] = { [3] = 42.0, [2] = 37.0, };
double F[] 1 22,0, 17,0, 1, 0.5, Jz

Here, E and F both are of type double [4]. Since such an initializer’s structure can
always be determined at compile time without necessarily knowing the values of the
items, the array is still an FLA:

(0] (1] [2] [3]

E’ double 0.0 I double 0.0 I double 37.0 I double 42.0 ‘
0] 1] 2] (31

F’ double 22.0 I double 17.0 I double 1.0 I double 0.5 ‘

All other array variable declarations lead to VLAs.

Takeaway 6.1.8 #5  If the length is not an integer constant expression, an array is a VLA.

The status of VLLAs has been changing in the history of C: they were introduced as
mandatory in C99 and passed to optional in C11. For C23, VLA as such are optional
for automatic objects (queried with the macro __STDC_NO_VLA__ ) but their types,
pointers to them, and thus VLLA parameters are again mandatory.

The length of an array can be computed with the sizeof operator. That operator
provides the size of any object,fso the length of an array can be calculated using simple
division.

44The real C jargon story about arrays and [] is a bit more complicated. Let us apply the as-if rule (take-
away 5.1.3 #3) to our explanation. All C programs behave as if the [] are directly applied to an array object.

45szll,t‘r, we will see what the unit of measure for such sizes is.

46Note also that the sizeof operator comes in two different syntactical forms. If applied to an object, as
it is here, it does not need parentheses, but they would be needed if we applied it to a type.
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Takeaway 6.1.3 #6  The length of an array Ais (sizeof A)/(sizeof A[0]).

That is, it is the total size of the array object, divided by the size of any of the array
elements.

6.1.4. Arrays as parameters. Yet another special case occurs for arrays as parame-
ters to functions. As we saw for the prototype of print£, such parameters may have
[1 that make them look like arrays. Because we cannot produce array values (take-
away 6.1.2 #2), array parameters cannot be passed by value, and thus array parameters
as such would not make much sense. Because of that, these parameters lose information
and behave much differently than we might expect.

Takeaway 6.1.4 #1  The innermost dimension of an array parameter to a function is lost.

Takeaway 6.1.4 #2  Don’t use the sizeof operator on array parameters to functions.

Takeaway 6.1.4 #3  Array parameters behave as if the array is passed by reference®.

Unfortunately, for this level, you just have to accept these facts as is; it will only be
possible to explain the mechanism when pointers are fully introduced.
Take the example shown in listing 6.1.

LisTING 6.1. A function with an array parameter

#include <stdio.h>

void swap_double (double a[static 2]) {
auto tmp = a[0];
al0] = a[l];
al[l] = tmp;
}
int main (void) {
double A[2] = { 1.0, 2.0, };
swap_double (A) ;
printf ("A[0]_=_%9, A[l]_=_%g\n", A[0], A[l]);
}

[

Here, swap_double (A) will act directly on array A and not on a copy. Therefore,
the program will swap the values of the two elements of A.

CHALLENGE 6 (Linear algebra). Some of the most important problems for which arrays are
used stem from linear algebra.

Can you write functions that do vector-to-vector or matriz-to-vector products at this point?
What about Gaussian elimination or iterative algorithms for matrizx inversion?

6.1.5. Strings are special. There is a special kind of array that we have encountered
several times and that, in contrast to other arrays, even has literals: strings®.

Takeaway 6.1.5 #1 A siring is a 0-terminated array of char.

That is, a string like "hel1o" always has one more element than is visible, which
contains the value 0, so here the array has length 6.

Like all arrays, strings can’t be assigned to, but they can be initialized from string
literals:
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char jayO[] = "jay";

char jayl[] = { "jay" }

char jay2([] = { "3, "a’', 'y', 0, };
’ ’

char jay3[4] = { "3', 'a’', 'y’', };

These are all equivalent declarations. Be aware that not all arrays of char are strings,
such as

char jay4[3] = { "J’, 'a’, 'y', }i
char jay5([3] = "jay";

These both cut off after the ’ v’ character and so are not 0-terminated:

0] [1] [2] [31]

jayO‘ char ’ 3’ I char ’a’ I char 'y’ I char ’"\0’ ‘
0] [1] [2] [3]

jayl‘ char ’ 7’ I char ’a’ I char 'y’ I char ’"\0’ ‘
[0] [1] [2] [3]

jay2‘ char ’j’ I char ’a’ I char 'y’ I char "\0’ ‘
[0] (1] [2] [31]

jay3‘ char ’j’ I char ’a’ I char "y’ I char ’"\0’ ‘
[0] [1] [2]

jay4‘ char ’j’ I char ’a’ I char "y’ ‘
[0] [1] [2]

jay5‘ char ’j’ I char ’a’ I char 'y’ ‘

We briefly saw the base type char of strings among the integer types. It is a nar-
row integer type that can be used to encode all characters of the basic character set® .
This character set contains all the characters of the Latin alphabet, Arabic digits, and
punctuation characters that we use for coding in C. It usually doesn’t contain special
characters (for example, @, d) or characters from completely different writing systems.

The vast majority of platforms nowadays use American Standard Code for Infor-
mation Interchange (ASCII) to encode characters in the type char. We don’t have to
know how the particular encoding works as long as we stay in the basic character set:
everything is done in C and its standard library, which use this encoding transparently.

To deal with char arrays and strings, there are a bunch of functions in the stan-
dard library that come with the header <string.h>. Those that just require an array
argument start their names with mem, and those that also require that their arguments
are strings start with str. Listing 6.2 uses some of the functions that are described
next.

Functions that operate on char arrays are as follows:

e memcpy (target, source, len) can be used to copy one array to an-
other. These have to be known to be distinct arrays. The number of chars
to be copied must be given as a third argument len.

e memcmp (sO, sl, len) comparestwo arrays in lexicographic order. That
is, it first scans the initial segments of the two arrays that happen to be equal
and then returns the difference between the two first characters that are dis-
tinct. If no differing elements are found up to len, 0 is returned.

e memchr (s, c, len) searches array s for the appearance of character c.

Next are the string functions:

<string.h>
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ListinG 6.2. Using some of the string functions

#include <string.h>
#include <stdio.h>
int main (int argc, charx argv[argc+l]) {
size_t const len = strlen(argv[0]); // Computes the length
// Initialized VLA, C23
// terminates array with 0 character
char name[len+l] = { };
// Copies the program name
memcpy (name, argv[0], len);

if (!strcmp(name, argv[0])) {
printf ("program_name_\"%s\"_successfully copied\n",
name) ;
} else ({

printf ("copying, %s_leads _to_different string %$s\n",
argv([0], name);

e strlen (s) returns the length of the string s. This is simply the position of
the first 0 character and not the length of the array. It is your duty to ensure
that s is indeed a string: that it is 0-terminated.

e strcpy (target, source) works similarly to memepy. It only copies
up to the string length of the source, and therefore it doesn’t need a 1en
parameter. Again, source must be 0-terminated. Also, target must be
big enough to hold the copy.

e strdup (source) and strndup (source, len) (since C23) work sim-
ilar as st repy, but they first allocate storage for the copy. We will see much
later in section 18.1 how such allocated storage works. Again, for strdup,
the argument source must be 0-terminated; for strndup, this require-
ment is a bit relaxed because the function will never read beyond the 1en™
character of source.

e stremp (s0, sl1) compares two arrays in lexicographic order, similarly to
memcmp, but it may not take some specialties of the language environment
into account, for example at which position of the alphabet the character “4” is
considered. The comparison stops at the first O character that is encountered
in either s0 or s1. Again, both parameters have to be 0-terminated.

e strcoll(s0, sl1) compares two arrays in lexicographic order, respecting
language-specific environment settings. We will learn how to properly set
this in subsection 8.7.

e strchr (s, c) issimilartomemchr, but the string s must be 0-terminated.

e strspn (s0, s1) returnsthelength of the initial segment in s0 that consist
of characters that also appear in s1.

e strespn (s0, s1) returns the length of the initial segment in s0 that con-
sist of characters that do not appear in s1.

Takeaway 6.1.5 #2  Using a string function with a non-string leads to program failure.

In real life, common symptoms for such misuse include

e High execution times for st rlen or similar scanning functions because they
don’t encounter a 0-character

e Segmentation violations because such functions try to access elements after
the boundary of the array object
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e Seemingly random corruption of data because the functions write data in
places where they are not supposed to

In other words, be careful and make sure all your strings really are strings. If you
know the length of the character array, but you do not know whether it is O-terminated,
memchr and pointer arithmetic (see section 11) can be used as a safe replacement for
strlen. Analogously, if a character array is not known to be a string, it is better to
copy it using memcpy.[EXS 471

In the discussion so far, I have been hiding an important detail from you: the pro-
totypes of the functions. For the string functions, they can be written as

size_t strlen(char const s[static 1]);

charx strcpy(char target[static 1], char const source[static 1]);
charx strdup(char const s[static 1]);

charx strndup (char const s[static 1], size_t n);

signed strcmp (char const sO[static 1], char const sl[static 1]);
signed strcoll (char const sO[static 1], char const sl[static 1]);
char+ strchr (const char s[static 1], int c);

size_t strspn(const char sl[static 1], const char s2[static 1]);
size_t strcspn(const char sl[static 1], const char s2[static 1]);

Other than the bizarre return type of strcpy, strchr, strdup and strndup, this
looks reasonable.*® The parameter arrays are arrays of unknown length, so the [static
1] correspond to arrays of at least one char. strlen, strspn, and strcspn will
return a size, and stremp will return a negative, 0, or positive value according to the
sort order of the arguments.

The picture darkens when we look at the declarations of the array functions:

voidx memcpy (voidx target, void constx source, size_t len);
signed memcmp (void constx s0, void constx sl, size_t len);
voidx memchr (const void *s, int c, size_t n);

You are missing knowledge about entities that are specified as voidx. These are
pointers to objects of unknown type. It is only in level 2, section 11, that we will see why
and how these new concepts of pointers and void type occur.

CHALLENGE 7 (Adjacency matrix). The adjacency matrix of a graph G is a matrix A that
holds a value true or false in element A[1] [ ] if there is an arc from node i to node .
At this point, can you use an adjacency matrix to conduct a breadth-first search in a graph G ?
Can you find connected components? Can you find a spanning tree?

CHALLENGE 8 (Shortest path). Extend the idea of an adjacency matrix of a graph G to a
distance matrix D that holds the distance when going from point i to point 3. Mark the absence
of a direct arc with a very large value, such as SIZE_MAX.

Can you find the shortest path between two nodes x and y given as an input?

[Exs 47]yse memchr and memcmp to implement a bounds-checking version of strcmp.
48Note that since (23, strchr is a type-generic macro (see 18.1.7) that can consistently be used with a
char« or char const* argument without violating a const-contract.
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6.2. Pointers as opaque types. We now have seen the concept of pointers pop
up in several places, in particular as a void+ argument and return type and as char
const*const to manipulate references to string literals. Their main property is that
they do not directly contain the information that we are interested in: rather, they refer,
or point, to the data. C’s syntax for pointers always has the peculiar «:

\ char constxconst p2string = "some_text";
L

It can be visualized like this:

p2string char constxconst

l

"some_text"

Compare this to the earlier array jay0, which itself contains all the characters of the
string that we want it to represent:

char jayO[] = "jay";
L
(0] (1] (2] [3]
jayO char ’ 3’ char ’a’ char 'y’ char ’"\0’

In this first exploration, we only need to know some simple properties of pointers.
The binary representation of a pointer is completely up to the platform and is not our
business.

Takeaway 6.2 #1  Pointers are opaque objects.

This means we will only be able to deal with pointers through the operations that
the C language allows for them. As I said, most of these operations will be introduced
later; in our first attempt, we will only need initialization, assignment, and evaluation.

One particular property of pointers that distinguishes them from other variables is
their state.

Takeaway 6.2 #2  Pointers are valid, null, or invalid.

For example, our variable p2 st ring is always valid because it points to the string
literal "some_text". Due to the second const, this association can never be changed.

Takeaway 6.2 #3  Initialization or assignment with nullptr makes a pointer null.

Take the following as an example:

‘ char constxconst p2nothing = nullptr;
!

We visualize this special situation like this:

p2nothing char constxconst

l
®

Note that this is different from pointing to an empty string:

‘ char constxconst pZ2empty = "";
!

p2empty char constxconst

nn
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Usually, we refer to a pointer in the null state as a null pointer”. Surprisingly, disposing
of null pointers is really a feature.

Takeaway 6.2 #4  In logical expressions, pointers evaluate to false if they are null.

Note that such tests can’t distinguish valid pointers from invalid ones. So, the really
“bad” state of a pointer is invalid, since this state is not observable.

Takeaway 6.2 #5 Invalid pointers lead to program failure.

An example of an invalid pointer could look like this:

‘ char constxconst p2invalid;
!

p2invalid char constx*const

L)

Because it is uninitialized, its state is indeterminate. Any evaluation of it would lead
to an invalid value and leave your program in an undefined state (takeaway 5.7.5 #2).
Thus, if we can’t ensure that a pointer is valid, we must at least ensure that it is set to
null.

Takeaway 6.2 #6  Always initialize pointers.

6.3. Structures. As we have seen, arrays combine several objects of the same base
type into a larger object. This makes perfect sense where we want to combine infor-
mation for which the notion of a first, second, .. .element is acceptable. If it is not or if
we have to combine objects of different type, then structures, introduced by the keyword
struct come into play.

6.3.1. Simple structures to access fields by name. As a first example, let us revisit the
corvids from section 5.6.2. There, we used a trick with an enumeration type to keep
track of our interpretation of the individual elements of an array name. C structures
allow for a more systematic approach by giving names to members (or fields) in an aggre-
gate:

struct birdStruct {
char constx jay;
char constx magpie;
char const* raven;
char constx chough;

bi

struct birdStruct const aName = {
.chough = "Henry",
.raven = "Lissy",
.magpie = "Frau",
.jay = "Joe",

bi

That is, from line 1 to 6, we have the declaration of a new type, denoted as st ruct
birdStruct. This structure has four members®, whose declarations look exactly like
normal variable declarations. So instead of declaring four elements that are bound
together in an array, here we name the different members and declare types for them.
Such declaration of a structure type only explains the type; it is not (yet) the declaration
of an object of that type and, even less, a definition for such an object.

Then, starting on line 7, we declare and define a variable (called aName) of the
new type. In the initializer and in later usage, the individual members are designated
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using a notation with a dot (.). Instead of bird[raven], as in subsection 5.6.1, for
the array we use aName . raven for the structure:

aName
struct birdStruct
.jay .magpie .raven .chough
char constx ‘ ‘ char constx ‘ ‘ char constx ‘ ‘ char constx ‘
l l l !
"Joe" "Frau" "LiSSy" "Henry"

Please note that in this example, the individual members again only refer to the
strings. For example, the member aName . magpie refers to an entity "Frau" that is
located outside the box and is not considered part of the st ruct itself.

Now, for a second example, let us look at a way to organize time stamps. Calendar
time is an complicated way of counting, in years, month, days, minutes, and seconds;
the different time periods such as months and years can have different lengths, and so
on. One possible way to organize such data for the nine different data that we need for
such time stamps (see the following discussion) could be an array:

[
\typedef int calArrayl[9];
!

0] [1] [31] (41 (8]
calArray int 27 int 27 int 2?7 I int 2?7 ‘-~‘ int 27 ‘

The use of this array type would be ambiguous: would we store the year in element
[0] or [5]? To avoid ambiguities, we could again use our trick with an enum. But the
C standard has chosen a different way. In <time.h>, it uses a struct that looks
similar to the following:

struct tm {
int tm_sec; // Seconds after the minute [0, 60]
int tm_min; // Minutes after the hour [0, 59]
int tm_hour; // Hours since midnight [0, 23]
int tm _mday; // Day of the month [1, 31]
int tm _mon; // Months since January [0, 11]
int tm_year; // Years since 1900
int tm wday; // Days since Sunday [0, 6]
int tm_yday; // Days since January [0, 365]
int tm_isdst;// Daylight Saving Time flag

}i

This struct has named members, such as tm_sec for the seconds and tm_year
for the year. Encoding a date, such as the date of this writing,

Terminal

> LC_TIME=C date -u
Wed Apr 3 10:00:47 UTC 2019

is relatively simple:

yday.c

struct tm today = {

.tm_year = 2019-1900,
.tm_mon = 4-1,
.tm_mday = 3,
.tm_hour = 10,
.tm_min = 0,

.tm_sec = 47,
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This creates a variable of type struct tm and initializes its members with the
appropriate values. The order or position of the members in the structure usually is
not important: using the name of the member preceded with a dot . suffices to specify

where the corresponding data should go:

.tm_sec .tm_min .tm_hour .tm_mday .tm_isdst

today| struct tm‘ int 5 I int 7 I int 16 I int 29 “ int O

Note that this visualization of t oday has an extra “box” compared to calArray.
Indeed, a proper struct type creates an additional level of abstraction. This struct

tm is a proper type in C’s type system.

Accessing the members of the structure is just as simple and has similar . syntax:

yday.c

printf ("this_year is_ %d, _next_year will be %d\n",
today.tm_year+1900, today.tm_year+1900+1);

A reference to a member such as today.tm_year can appear in an expression

just like any variable of the same base type.

There are three other members in struct tm that we didn’t even mention
initializer list: tm_wday, tm_yday, and tm_isdst. Since we didn’t mention
they are automatically set to 0.

in our
them,

Takeaway 6.3.1 #1  Omitted struct initializers force the corresponding member to 0.

This can even go to the extreme that none of the members are initialized.

Previ-

ously (takeaway 5.5 #3), we saw that there is a default initializer that works for all data

types: {}.

So when we initialize struct tm as we did here, the data structure is not consis-
tent; the tm_wday and tm_yday members don’t have values that would correspond
to the values of the remaining members. A function that sets this member to a value

that is consistent with the others could be something like

vday.c

struct tm time_set_yday (struct tm t) ({
// tm_mdays starts at 1.
t.tm _yday += DAYS_BEFORE[t.tm mon] + t.tm mday - 1;
// Takes care of leap years
if ((t.tm_mon > 1) && leapyear (t.tm year+1900))
++t .tm_yday;
return t;

It uses the number of days of the months preceding the current one, the tm_mday
member, and an eventual corrective for leap years to compute the day in the year. This
function has a particularity that is important at our current level: it modifies only the

member of the parameter of the function, t, and not of the original object.

Takeaway 6.3.1 #2 struct parameters are passed by value.

To keep track of the changes, we have to reassign the result of the function to the

original:

vday.c ‘

‘ .
‘ today = time_set_yday (today) ;
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Later, with pointer types, we will see how to overcome that restriction for functions,
but we are not there yet. Here we see that the assignment operator = is well defined for
all structure types. Unfortunately, its counterparts for comparisons are not.

Takeaway 6.3.1 #3  Structures can be assigned.

Takeaway 6.3.1 #4  Structures can not be compared with == or ! =

Listing 6.3 shows the complete example code for the use of struct tm. It doesn’t
contain a declaration of the historical struet tm since this is provided through the
standard header <t ime.h>. Nowadays, the types for the individual members would
probably be chosen differently. But many times in C we have to stick with design deci-
sions that were made many years ago.

Takeaway 6.3.1 #5 A structure layout is an important design decision.

You may regret your design after some years, when all the existing code that uses
it makes it almost impossible to adapt it to new situations.

6.3.2. Structures with fields of different types. Another use of st ruct is to group ob-
jects of different types together in one larger enclosing object. Again, for manipulating
times with a nanosecond granularity, the C standard already has made that choice:

struct timespec {
time t tv_sec; // Whole seconds = 0

long tv_nsec; // Nanoseconds [0, 999999999
}i
.tv_sec .tv_nsec
struct timespec time_t 27 long °°?

Here, we see the opaque type time_t that we saw in table 5.2 for the seconds, and a
long for the nanoseconds.f Again, the reasons for this choice are historical; nowadays
the chosen types would perhaps be a bit different. To compute the difference between
two struct timespec times, we can easily define a function.

Whereas the function di £ £t ime is part of the C standard, such functionality here
is very simple and isn’t based on platform-specific properties. So, it can easily be im-
plemented by anyone who needs it.[Fx 501

6.3.3. Nested structures. Any data type other than a VLA is allowed as a member in
a structure. So structures can also be nested in the sense that a member of a struct
can again be of (another) struct type, and the smaller enclosed structure may even
be declared inside the larger one:

struct person {
char name[256];
struct stardate {
struct tm date;
struct timespec precision;
} bdate;
bi

A structural view is shown in figure 6.1. Here the gray boxes correspond to possible
padding, a concept which we will see in the following discussion.

49Unf()rmnately, even the semantics of time_t are different here. In particular, tv_sec may be used
in arithmetic.
[Exs 50lWrite a function t ime spec_di ff that computes the difference between two t imespec values.
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ListiNG 6.3. A sample program manipulating struct tm

1 |#include <time.h>

2 | #include <stdbool.h>
3 |#include <stdio.h>
4

5

bool leapyear (unsigned year) {

6 /+ All years that are divisible by 4 are leap years,
7 unless they start a new century, provided they

8 are not divisible by 400. x/

9 return ! (year $ 4) && ((year $ 100) || !(year % 400));
10 |}

11

12 | #define DAYS_BEFORE \

13 | (int const[12]) { \

14 [0] = 0, [1] = 31, [2] = 59, [3] = 90, \

15 [4] = 120, [5] = 151, [6] = 181, [7] = 212, \

16 [8] = 243, [9] = 273, [10] = 304, [11] = 334, \

17 |1}

18

19 | struct tm time_set_yday (struct tm t) {

20 // tm_mdays starts at 1.

21 t.tm_yday += DAYS_BEFORE[t.tm mon] + t.tm mday - 1;
22 // Takes care of leap years

23 if ((t.tm_mon > 1) && leapyear (t.tm _year+1900))

24 ++t .tm_yday;

25 return t;

26 |}

27

28 |int main (void) {
29 struct tm today = {

30 .tm_year = 2019-1900,

31 .tm mon = 4-1,

32 .tm_mday = 3,

33 .tm_hour = 10,

34 .tm min = 0,

35 .tm_sec = 47,

36 )i

37 printf ("this_year is %d, _next year will be %d\n",
38 today.tm_year+1900, today.tm_year+1900+1);

39 today = time_set_yday (today);
40 printf ("day, of the year is_%d\n", today.tm yday);
41 |}

Much different than for other programming languages such as C++, the visibility of
declaration struct stardate is the same as for struct person. A struct itsell
(here, person) does not define a new scope for a struct (here, stardate) that
is defined within the {} of the outermost struct declaration. That is, if the nested
struct declarations appear globally, both structs are subsequently visible for the
whole C file. If they appear inside the body of a function, their visibility is bound to the
{} compound statement in which they are found.

Takeaway 6.3.8 #1 All struct declarations in a nested declaration have the same scope
of visibiliry.

So, a more adequate version would be as follows:
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struct person
. name

(0] [255]

‘ char 2?7 ‘---‘ char ?7

.bdate
struct stardate
.date
.tm_sec .tm_min .tm_isdst
struct tm‘ int 2?7 int ?7 " int 2?7 -
.precision
.tv_sec .tv_nsec
struct timespec‘ time t 2?7 long 27

Ficure 6.1. A structure layout

struct stardate {
struct tm date;
struct timespec precision;
bi
struct person {
char name[256];
struct stardate bdate;
bi

This version places all structs on the same level because they end up there anyway.
Nevertheless, it doesn’t change the structural view as we have previously presented: the
layout and semantics of struct person stay exactly the same as before.

6.3.4. Coalescing structure fields. We have seen that our compiler places the fields
of a structure in the same order into the storage as they are defined. If the fields have
different sizes, the compiler may want to put them at specific positions of the structure.
The main reason to do so is the ease of access to such a field; due to the organization of
storage into words that comprise several bytes, it might be better to start a new field at
such a word boundary. We will discuss this feature, called alignment later in section 12.7.
Alignment can amount to some wasted space after any field, called byte padding, the grey
areas in our scheme for the type person in figure 6.1. If there is such padding, it will
always consist of 1 or several bytes.

Takeaway 6.3.4 #1  There can be padding after any structure member.

Takeaway 6.3.4 #2  There is no padding at the beginning of a structure.

One of the possibilities to reduce the waste by padding bytes is to chose a specific
ordering of the members. s 51]

[Exs 5Hreate six different structure types for each possibility to order three fields inside a structure: one
unsigned char, one unsigned, and one unsigned long long. Print the sizes of these six structures;
they should be significantly different. Compute the minimal size as the sum of the sizes of each member.
Does any of your structure have this size? Which of your structures comes closest to that ideal size?
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Another possible waste of bits and bytes in our structure can originate from an
inefficient use. Remember that we used unsigned values to represent sets of birds.
Effectively, we only needed 4 bits within such an unsigned; all other bits are wasted.
This phenomenon is called bit padding because, in contrast to the previous such padding,
in general, it does not fall on byte boundaries and can go down to account for single
bits.

This waste is quite high in the predefined structure tm: indeed, a field such as
tm_sec only has 61 possible values, so it can be stored in 6 bits instead of the at least
16 bits that an int member occupies. C traditionally has a mechanism called bit-field
that can be used to reduce the bits that a member of a structure occupies:

// *x% This has errors, don’t use it! *xx*

struct tib {
int tib_sec 6; // Seconds after the minute [0, 60]
int tib_min 6; // Minutes after the hour [0, 59]
int tib_hour :5; // Hours since midnight [0, 23]
int tib_mday :5; // Day of the month [1, 31]
int tib_mon 4; // Months since January [0, 11]
int tib_year; // Years since 1900
int tib_wday :3; // Days since Sunday [0, 6]
int tib_yday :9; // Days since January [0, 365]
int tib_isdst:1; // Daylight Saving Time flag

bi

That is, we put the number of bits that we need at the end of a member declaration,
separated by a : character. So, in this case, we are indicating that we need at least 39
bit for the bit-fields (plus sizeof (int) » CHAR_ BIT bit for the int) to represent
all the values that interest us. It is then up to the compiler to organize the structure
by coalescing successive bit-fields into larger units. A common layout here could be
to group the first five fields with their 28 bits into one unit of the size of an int, and
then have t ib_year in a separate int, and then have another unit for the final 13 bit.
Instead of 9xsizeof (int) this scheme only uses 3xsizeof (int), three times less.

All of this still is comfortable to use. The fields can be used much as before: a
member designator x.tib_year, for example, can be used in expressions or in as-
signments as the corresponding one in struct tm, and designated initializers in the
form .tib_mon = 3 work as expected.

But, the traditional bit-fields as previously presented have some drawbacks and
therefore the code that is shown there may be erroneous. First, other than in all other
declarations a specification of int for a bit-field may correspond to a signed or an un-
signed type. On some architectures where int here means actually unsigned, the
code actually is correct; all values as indicated can be stored in the corresponding field.
On (most) other architectures where the field is signed, we lack a bit for the repre-
sentation of most fields. For example, if the field t ib_mday has 5 bit and is signed,
it can hold the values —16, ..., 15. An assignment such as x.tib_mday = 31 hasa
value that is out of that range; hopefully the compiler will then choose the correspond-
ing value with the same bit pattern, —1, for the store operation. But then, when such a
value is read, it is interpreted as negative, and any computations with dates go wrong.

This design flaw can be circumvented by revisiting the specification. We could
augment all specifications by adding 1 sign bit. But then for our example the first five
fields already would need 33 bit and on most architectures will not be stored in a single
unit. The other possibility is to use unsigned for all our bit-fields, which is what I
would recommend.

Takeaway 6.8.4 #8 Do not use bare int for the specification of a bit-field.
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There is also a second drawback to bit-fields from before C28, namely that the
type to which a bit-field resolves in an expression (something like x . t ib_mday) is not
sufficiently specified by the standard, and compilers currently diverge. This is nothing
that we can observe at our current level, but it may bite us much later when we try to
infer types for declarations or type-generic function calls in section 18.

With the introduction of the _BitInt types, we now have a new possibility:

struct tbi {

unsigned _BitInt (6) tbi_sec ; // Seconds after the minute , 60]

6 [0
unsigned _BitInt (6) tbi_min 6; // Minutes after the hour [0, 59]
unsigned _BitInt (5) tbi_hour :5; // Hours since midnight [0, 23]
unsigned _BitInt (5) tbi_mday :5; // Day of the month [1, 311
unsigned _BitInt (4) tbi_mon 4; // Months since January [0, 111
signed tbi_vyear; // Years since 1900
unsigned _BitInt (3) tbi_wday :3; // Days since Sunday [0, 6]
unsigned _BitInt (9) tbi_yday :9; // Days since January [0, 365]
bool tbi_isdst:1; // Daylight Saving Time flag

bi

Here, all bit-fields have exactly the type and behave exactly as specified. The types
that are explicitly specified as unsigned types behave as such. For example, a test

i X.tbi_min < 60 i
! |

is sufficient to know whether the field is in its valid range.

Takeaway 6.3.4 #4  Use a _BitInt (N) type for a numerical bit-field of width N.

Note, though, that the rules for using _Bit Int types in arithmetic may be marginally
different than for using signed int.

The field tbi_isdst is modeled as bool, which is how any field that acts as a
flag should be specified.

Takeaway 6.8.4 #5 Use bool as type of a flag bit-field of width 1.

6.4. New names for types: Type aliases. As we saw in the previous section, a
structure introduces not only a way to aggregate differing information into one unit but
also a new type name for the beast. For historical reasons (again!), the name that we
introduce for the structure always has to be preceded by the keyword struect, which
makes its use a bit clumsy. Also, many C beginners run into difficulties with this when
they forget the struct keyword and the compiler throws an incomprehensible error
at them.

There is a general tool that can help us avoid that by giving a symbolic name to an
otherwise existing type: typede£. Using it, a type can have several names, and we can
even reuse the tag name® that we used in the structure declaration:

typedef struct birdStruct birdStructure;
typedef struct birdStruct birdStruct;

Then, struct birdStruct, birdStruct, and birdStructure can all be used
interchangeably. My favorite use of this feature is the following idiom:

typedef struct birdStruct birdStruct;
struct birdStruct {

bi

That is, we precede the proper struct declaration by a typedef using exactly the
same name. This works because in the combination of st ruct with a following name,
the tag® is always valid, a forward declaration® of the structure.
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Takeaway 6.4 #1 Forward-declare a st ruct within a typedef using the same identi-
fier as the tag name.

C++ follows a similar approach by default, so this strategy will make your code
easier to read for people who come from there.

The typedef mechanism can also be used for types other than structures. For
arrays, this could look like

typedef double vector[64];
typedef vector vecvec[l6];
vecvec A;

typedef double matrix[16][64];
matrix B;

double C[16][64];

Here, typedef£ only introduces a new name for an existing type, so A, B, and C have
exactly the same type: double[16] [64].

Takeaway 6.4 #2 A typedef only creates an alias for a type but never a new type.

The C standard also uses typedef£ a lot internally. The semantic integer types
such as size_t that we saw in subsection 5.2 are declared with this mechanism. The
standard often uses names that terminate with _t for typede£. This naming conven-
tion ensures that the introduction of such a name in an upgraded version of the standard
will not conflict with existing code. So you shouldn’t introduce such names yourself in
your code.

Takeaway 6.4 #3  Identifier names terminating with __t are reserved.
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Summary

Arrays combine several values of the same base type into one object.
Pointers either refer to other objects, are null or are invalid.
Structures combine values of different base types into one object.
typedefs provide new names for existing types.



7. FUNCTIONS 95

7. Functions

This section covers

e An introduction to simple functions
e Working with main
e Understanding recursion

We have already seen the different means that C offers for conditional execution: execu-
tion that, based on a value, chooses one branch of the program over another to continue.
The reason for a potential “jump” to another part of the program code (for example, to
an else branch) is a run-time decision that depends on run-time data. This section
starts with a discussion of unconditional ways to transfer control to other parts of our
code: by themselves, they do not require any runtime data to decide where to go.

The code examples we have seen so far often used functions from the C library
that provided features we did not want (or were not able) to implement ourselves, such
as print£ for printing and strlen for computing the length of a string. The idea
behind this concept of functions is that they implement a certain feature once and for
all and that we then can rely on that feature in the rest of our code.

A Tunction for which we have seen several definitions ismain, the entry point of ex-
ecution into a program. In this section, we will look at how to write functions ourselves
that may provide features just like the functions in the C library.

The main reasons motivating the concept of functions are modularity and code fac-
torization:

e Functions avoid code repetition. In particular, they avoid easily introduced
copy-and-paste errors and spare the effort of editing in multiple places if you
modify a piece of functionality. Thereby, functions increase readability and
maintainability.

e Use of functions decreases compilation times. A given code snippet that we
encapsulate in a function is compiled only once, not at each point where it is
used.

e Functions simplify future code reuse. Once we have extracted code into a
function that provides certain functionality, it can easily be applied in other
places that we did not even think of when implementing the function.

e Functions provide clear interfaces. Function arguments and return types
clearly specify the origin and type of data that flows into and out of a computa-
tion. Additionally, functions allow us to specify invariants for a computation:
pre- and post-conditions.

e Functions provide a natural way to formulate algorithms that use a “stack” of
intermediate values.

In addition to functions, C has other means of unconditional transfer of control, which
are mostly used to handle error conditions or other forms of exceptions from the usual
control flow:

e exit, Exit, quick_exit, and abort terminate the program execution
(see subsection 8.8).

e goto transfers control within a function body (see subsections 18.2.2 and 15.6).

e setjmp and longjmp can be used to return unconditionally to a calling
context (see subsection 19.5).

e Certain events in the execution environment or calls to the function raise
may raise signals that pass control to a specialized function, a signal handler.

7.1. Simple functions. We have used a lot of functions and seen some of their
declarations (for example, in section 6.1.5) and definitions (such as listing 6.3). In all
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of these functions, parentheses () play an important syntactical role. They are used for
function declarations and definitions to encapsulate the list of parameter declarations.
For function calls, they hold the list of arguments for that concrete call. This syntactic
role is similar to [] for arrays: in declarations and definitions, they contain the size of
the corresponding dimension. In a designation like A [ 1], they are used to indicate the
position of the accessed element in the array.

All the functions we have seen so far have a prototype®: their declaration and defi-
nition, including a parameter type-list and a return type. To see that, let us revisit the
leapyear function from listing 6.8:

yday.c

bool leapyear (unsigned year) {
/* All years that are divisible by 4 are leap years,
unless they start a new century, provided they
are not divisible by 400. x/
return ! (year % 4) && ((year % 100) || !(year % 400));

A declaration of that function (without a definition) could look as follows:

|
‘ bool leapyear (unsigned year);
!

Alternatively, we could even omit the name of the parameter and/or add the storage
specifier extern:’?

|
‘ extern bool leapyear (unsigned) ;
!

Important for such a declaration is that the compiler sees the types of the argument(s)
and the return type, so here the prototype of the function is “function receiving an
unsigned and returning an bool.”

There are two special conventions that use the keyword void:

e If the function is to be called with no parameter, the list is replaced by the
keyword void, like main in our very first example (listing 1.1).

e If the function doesn’t return a value, the return type is given as void, for
example swap_double.

Such a prototype helps the compiler in places where the function is to be called. It only
has to know about the parameters the function expects. Have a look at the following:

extern double fbar (double) ;

double fbar2 = fbar(2)/2;

Here, the call fbar (2) is not directly compatible with the expectation of function
fbar: it wants a double but receives a signed int. But since the calling code knows
this, it can convert the signed int argument 2 to the double value 2.0 before
calling the function. The same holds for the use of the return value in an expression:
the caller knows that the return type is double, so floating-point division is applied
for the result expression.

Historically, C had ways to declare functions without prototype; they have been
retired with C28.

Takeaway 7.1 #1 = All functions must have prototypes.

52More details on the keyword extern will be provided in subsection 13.2.
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A notable exception to that rule are functions that can receive a varying number of
parameters, such as print £. They use a mechanism for parameter handling called a
variable argument list®, which comes with the header <stdargs.h>.

We will see later (subsection 17.4.2) how this works, but this feature is to be avoided
in any case. Already from your experience with print £, you can imagine why such an
interface poses difficulties. You, as the programmer of the calling code, have to ensure
consistency by providing the correct "$xx" format specifiers.

In the implementation of a function, we must watch that we provide return values
for all functions that have a non-void return type. There can be several return
statements in a function.

Takeaway 7.1 #2  Functions have only one entry but can have several returns.

All returns in a function must be consistent with the function declaration. For a
function that expects a return value, all return statements must contain an expression;
in functions that expect no such value, a return statement that contains an expression
is erroneous.

Takeaway 7.1 #3 A function return must be consistent with its type.

But the same rule as for the parameters on the calling side holds for the return
value. A value with a type that can be converted to the expected return type will be
converted before the return happens.

If the type of the function is void, the return (without expression) can even be
omitted.

Takeaway 7.1 #4  Reaching the end of the body of a function is equivalent to a return
statement without an expression.

Similar to the evaluation of a variable, a function that is expected to return a value
would return an uninitialized value, and this could jeopardize the execution if the call
tries to evaluate it. Therefore, this construct is only allowed for functions that do not
return a value.

Takeaway 7.1 #5  Reaching the end of the body of a function is only allowed for void func-
tions.

7.2. main is special. Perhaps you have noted some particularities about main. It
has a very special role as the entry point into your program: its prototype is enforced by
the C standard, but it is implemented by the programmer. Being such so pivot between
the runtime system and the application, main has to obey some special rules.

First, to suit different needs, it has several prototypes, one of which must be im-
plemented. Two should always be possible:

int main (void) ;
int main(int argc, charx argv[argc+l]);

Then, any C platform may provide other interfaces. Two variations are relatively com-
mon:

e On some embedded platforms where main is not expected to return to the
runtime system, the return type may be void.
e On many platforms, a third parameter can give access to the “environment.”

<stdargs.h>
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You should not rely on the existence of such other forms. If you want to write portable
code (which you do), stick to the two “official” forms. For these, the return value of int
gives an indication to the runtime system if the execution was successful: EXIT_SUCCESS
or EXIT_FAILURE indicates success or failure of the execution from the programmer’s
point of view. These are the only two values that are guaranteed to work on all plat-
forms.

Takeaway 7.2 #1 Use EXIT SUCCESSand EXIT FAILURE as returnvalues for main.

In addition, there is a special exception for main, as it is not required to have an
explicit return statement.

Takeaway 7.2 #2  Reaching the end of mainis equivalent to a ret urnwith EXIT SUCCESS.

Personally, I am not much of a fan of such exceptions without tangible gain; they
just make arguments about programs more complicated.

The library function exit has a special relationship with main. As the name in-
dicates, a call to exit terminates the program. The prototype is as follows:

| |
‘ [ [noreturn]] void exit (int status); ‘
! |

This functions terminates the program exactly as a return from main would.
The status parameter has the role that the return expression in main would have.

Takeaway 7.2 #3  Calling exit (s) is equivalent to the evaluation of return sinmain.

We also see that the prototype of exit is special because it has a void type. Just
like a return statement, exit never fails.

Takeaway 7.2 #4  exit never fails and never returns to its caller.

The latter is indicated by the attribute [ [noreturn] ]. This attribute should only
be used for such special functions.f

There is another feature in the second prototype of main: argv, the vector of
command-line arguments. We looked at some examples where we used this vector
to communicate values from the command line to the program. For example, in list-
ing 3.1,

h eron.c !

12 | double const a = strtod(argv[i], nullptr); // arg -> double |

these command-line arguments were interpreted as double data for the program:

[0] [1] [argc]
argv ‘ charx* char~ ‘ ‘ charx ‘
l ! l
"./heron" "0.785" x
So each of the argv[i] fori = 0, ..., argc is a pointer similar to those we en-

countered earlier. As an easy first approximation, we can see them as strings.
Takeaway 7.2 #5  All command-line arguments are transferred as strings.

53¢ versions before C23 had the keyword _Noreturn and the macro noreturn, a pretty-printed ver-
sion of it, which came with the header stdnoreturn.h.
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It is up to us to interpret them. In the example, we chose the function strtod to
decode a double value that was stored in the string.
Of the argv strings, two elements hold special values.

Takeaway 7.2 #6 argv [0] points to the name of the program invocation.

There is no strict rule about what that program name should be, but usually it is
the name of the program executable.

Takeaway 7.2 #7 argv[argc] is a null pointer.

In the argv array, the last argument could always be identified using this property,
but this feature isn’t very useful: we have argc to process that array.

7.38. Recursion. An important feature of functions is encapsulation. Local vari-
ables are only visible and alive until we leave the function, either via an explicit return
or because execution falls out of the last enclosing brace of the function’s body. Their
identifiers (names) don’t conflict with other similar identifiers in other functions, and
once we leave the function, all the mess we leave behind is cleaned up.

Even better, whenever we call a function, even one we have called before, a new
set of local variables (including function parameters) is created, and these are newly
initialized. This also holds if we newly call a function for which another call is still
active in the hierarchy of calling functions. A function that directly or indirectly calls
itself is called recursive, and the concept is called recursion.

Recursive functions are crucial for understanding C functions. They demonstrate
and use primary features of the function call model and are only fully functional with
these features. As a first example, we will look at an implementation of Euclid’s algo-
rithm to compute the greatest common divisor (gcd) of two numbers:

euclid h

inline size_t gcd2 (size_t a, size_t b) [[__unsequenced ]] {
assert (a <= b);
if (!a) return b;

size. t r = b % a;
return gcd2(r, a);

As you can see, this function is short and seemingly nice; it makes some assump-
tions about its arguments and thus is not full interface for gcd.5_4 But to understand how
it works, we need to thoroughly understand how functions work and how we transform
mathematical statements into algorithms.

Given two integers a, b > 0, the gcd is defined as the greatest integer ¢ > 0 that
divides into both a and b. Here is the formula:

ged(a, b) = max{c € N | c¢|ea and ¢|b}

If you are not used to such mathematical formulations, this is probably a bit hard
to swallow, but be ensured that with the explanations and examples that are to come
shortly, you will see much clearer what this is all about.

If we also assume that a < b, it can be shown that two recursive formulas hold:

(2) ged(a, b) = ged(a, b — a)
3) gcd(a, b) = ged(a, b%a)

That is, the ged doesn’t change if we subtract the smaller integer or if we replace the

larger of the two with the modulus of the other. These formulas have been used to

54 he [ [unsequenced] ] attribute will be discussed much later in section 16.3.
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compute the ged since the days of ancient Greek mathematics. They are commonly
attributed to Euclid (Edkigions, around 300 B.C.) but may have been known even
before him. The term recursion for such formulas (and derived from that for functions)
refers to the fact that the value of a term (here, gcd(a, b)) is explained by using the same
term but with different values (here, for example, gcd(a, b — a)).

Our C function gcd2 uses equation (3). First (line 9), it checks whether a pre-
condition for the execution of this function is satisfied: that is, whether the first ar-
gument is less than or equal to the second. It does this by using the assert macro
from <assert .h>. This would abort the program with an informative message if the
function was called with arguments that didn’t satisfy that condition (we will see more
explanations of assert in subsection 8.8).

Takeaway 7.8 #1  Make all preconditions for a function explicit.

Then, line 10 checks whether a is 0, in which case it returns b. This is an important
step in a recursive algorithm.

Takeaway 7.8 #2  In a recursive function, first check the termination condition.

A missing termination check leads to infinite recursion; the function repeatedly calls
new copies of itself until all system resources are exhausted and the program crashes.
On modern systems with large amounts of memory, this may take some time, during
which the system will be completely unresponsive. You'd better not try it.

Otherwise, we compute the remainder r of b modulo a (line 11). Then the func-
tion is called recursively with r and a, and the return value of that is directly returned.

Figure 7.1 shows an example of the different recursive calls that are issued from
an initial call gcd2 (18, 30). Here, the recursion goes four levels deep. Each level
implements its own copies of the variables a, b, and r.

For each recursive call, modulo arithmetic (takeaway 4.2.2 #5) guarantees that the
precondition is always fulfilled automatically. For the initial call, we have to ensure this
ourselves. This is best done by using a different function, a wrapper:

euclid.h

inline size t gcd(size_t a, size t b) [[__unsequenced_ ]] {
assert (a) ;
assert (b) ;
if (a < b)
return gcd2 (a, b);
else
return gcd2 (b, a);

Takeaway 7.3 #3  Ensure the preconditions of a recursive function in a wrapper function.

This avoids having to check the precondition at each recursive call: the assert macro
is such that it can be disabled in the final production object file.

Another famous example of a recursive definition of an integer sequence are Fi-
bonnacci numbers, a sequence of numbers that appeared as early as 200 B.C. in Indian
texts. In modern terms, the sequence can be defined as

“) =1
) Fy=1
(6) Fi = Fi—l + Fi_Q foralli > 2



Call level 0

a =18

b = 30

'a = false
r = 12

gcd2 (12, 18) | =

return 6

— 6

7. FUNCTIONS

Call level 1

a = 12
b =18
la=— false
r =6

return 6

gcd2 (6, 12) | =

— 6

Call level 2

a =6

b =12

la = false
r =0

gcd2 (0, 6)

return 6

Ficure 7.1. Recursive call gcd2 (18, 30)

=0
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Call level 3

a =20

b =656

la = true
return 6

The sequence of Fibonacci numbers is fast-growing. Its first elements are 1, 1, 2,

3,5,8,13,21, 34, 55, 89, 144, 377, 610, and 987.
With the golden ratio,

(7)
it can be shown that

8)

1+vV5
2

F,
' V5

and so, asymptotically, we have

©)

So, the growth of F, is exponential.
The recursive mathematical definition can be translated in a straightforward man-

ner into a G function:

_¢ =™

=1.61803...

fihonacci c

size_t fib(size_t n)

|

|

| if (n < 3)
\ return 1;
‘ else

|

return fib(n-1)

[ [__unsequenced__]]

iy (m=2) g

{
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Call level 0
n =4
n<3 = false
fib (3) =
Call level 1
n=3
n<3 = false
fib (2) s
Call level 2
n=2
n<3 = true
&1 | return 1
fib (1) =
Call level 2
n=1
n<3 = true
&1 | return 1
&2 | return 1 + 1
fib (2) -
Call level 1
n=2
n<3 = true
&1 | return 1
return 2 + 1

Ficure 7.2. Recursive call £ib (4)

9 |}

Here, again, we first check for the termination condition: whether the argument to
the call, n, is less than 3. If it is, the return value is 1; otherwise, we return the sum of
calls with argument values n-1 and n-2.

Figure 7.2 shows an example of a call to £ib with a small argument value. We
see that this leads to three levels of stacked calls to the same function with different
arguments. Because equation (6) uses two different values of the sequence, the scheme
of the recursive calls is much more involved than the one for gcd2. In particular, there
are three leaf calls: calls to the function that fulfill the termination condition and, thus,
by themselves, do not go into recursion. s 5]

Implemented like that, the computation of the Fibonacci numbers is quite slow.
[Exs 561 Tny fact, it is easy to see that the recursive formula for the function itself also
leads to an analogous formula for the function’s execution time:

(10) Ttin 1) = Co
(11) Tsin2) = Co
(12) Trini) =Teini-1) +Tripi2) +C1 foralli > 3

where Cjy and Cy are constants that depend on the platform.

[Exs 531G how that a call £ib (n) induces F, leaf calls.
[Exs 5(’]Measure the times for calls to £ib (n) with n set to different values. On POSIX systems, you can use
y y
/bin/time to measure the run time of a program’s execution.
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It follows that regardless of the platform and the cleverness of our implementation,
the function’s execution time will always be something like

Co+C }
(13) Trip ) = Fu(Co+Cy) ~ " - % = " Cy

with another platform-dependent constant Ce. So the execution time of £ib (n) is
exponential in n, which usually rules out using such a function in practice.

Takeaway 7.8 #4  Multiple recursion may lead to exponential computation times.

If we look at the nested calls in figure 7.2, we see that we have the call £ib (2)
twice, and thus all the effort to compute the value for fib (2) is repeated. The function
fibCacheRec avoids such repetitions. It receives an additional argument, cache,
which is an array that holds all values that have already been computed:

fihonacciCache ¢

/* Compute Fibonacci number n with the help of a cache that may
hold previously computed values. =%/
size_t fibCacheRec(size_t n, size_t cache[static n]) {
if (!cache[n-1]) {
cache[n-1]
= fibCacheRec (n-1, cache) + fibCacheRec (n-2, cache);
}

return cache[n-1];

size_t fibCache(size_t n) {
if (n+l <= 3) return 1;
/+ Set up a VLA to cache the values. x/
#if _ STDC _VERSION_ _ > 202311L
/* Since C23, VLA can be default initialized. =x/
size_t cachel[n] = { };
f#else
size_t cache[n]; memset (cache, 0, nx*sizeof (xcache));
#fendif
/+ Non-trivial initialization is replaced by assignment. =*/
cache[0] = 1; cache[l] = 1;
/+ Call the recursive function. =/
return fibCacheRec (n, cache);

By trading storage against computation time, the recursive calls are affected only if
the value has not yet been computed. Thus, the fibCache (i) call has an execution
time that is linear in n:

(14) Ttipcache (n) =N- Cs

for a platform-dependent parameter C3.["% 7] Just by changing the algorithm that
implements our sequence, we are able to reduce the execution time from exponential

to linear! We didn’t (and wouldn’t) discuss implementation details, nor did we perform
[Exs 58]

concrete measurements of execution time.
Takeaway 7.8 #5 A bad algorithm will never lead to a performing implementation.

Takeaway 7.3 #6  Improving an algorithm can dramatically improve performance.

[Exs 571ppoye equation (14).
[Exs 58I\ feasure times for £ibCache (n) call with the same values as for fib.
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For the fun of it, £ib2Rec shows a third implemented algorithm for the Fibonacci
sequence. It gets away with a constant-length array (CLA) instead of a variable-length
array (VLA):

fihanacci9 ¢

void fib2rec(size_t n, size_t buf[static 2]) [[__unsequenced ]]
{
if (n > 2) {
size t res = buf[0] + buf[l];
buf[l] = buf[0];
buf[0] res;
fib2rec (n-1, buf);

size_t fib2 (size_t n) [[__unsequenced_]] {
size t res([2] = { 1, 1, };
fib2rec (n, res);
return res[0];

Proving that this version is still correct is left as an exercise.lF*s %1 Also, up to now
we have only had rudimentary tools to assess whether this is “faster” in any sense we
might want to give the term, x5

CHALLENGE 9 (Factorization). Now that weve covered functions, see wether you can implement
a program factor that receives a number N on the command line and prints out

N: FO F1 F2 ...

where FO and so on are all the prime factors of N.

The core of your implementation should be a function that, given a value of type size_t, returns
its smallest prime factor.

Extend this program to receive a list of such numbers and output such a line for each of them.

[Exs 59]Use an iteration statement to transform fib2rec into a nonrecursive function fib2iter.

[Exs 601\ [easure times for £ib2 (n) calls with the same values as £ib .
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Summary

e Functions have a prototype that determines how they can be called.

e Terminating main and calling exit are the same.

e Each function call has its own copy of local variables and functions can be
called recursively.
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8. C library functions

This section covers

Doing math, handling files, and processing strings
Manipulating time

Managing the runtime environment

Terminating programs

The functionality that the C standard provides is separated into two big parts. One is the
proper C language, and the other is the C library. We have looked at several functions
that come with the C library, including print £, puts, and strtod, so you should
have a good idea what to expect: basic tools that implement features that we need in
everyday programming and for which we need clear interfaces and semantics to ensure
portability.

On many platforms, the clear specification through an application programming in-
terface (API) also allows us to separate the compiler implementation from the library
implementation. For example, on Linux systems, we have a choice of different compil-
ers, most commonly gcc and clang, and different C library implementations, such as
the GNU C library (glibc), dietlibc, and musl. Potentially, any of these choices
can be used to produce an executable.

We will first discuss the general properties and tools of the C library and its inter-
faces and then describe some groups of functions: mathematical (numerical) functions,
input/output functions, string processing, time handling, access to the runtime envi-
ronment, and program termination.

8.1. General properties of the C library and its functions. Roughly, library func-
tions target one or two purposes:

Platform abstraction layer. Functions that abstract from the specific properties and
needs of the platform. These are functions that need platform-specific bits to im-
plement basic operations such as 10, which could not be implemented without deep
knowledge of the platform. For example, puts has to have some concept of a “termi-
nal output” and how to address it. Implementing these functionalities would exceed the
knowledge of most C programmers because doing so requires OS- or even processor-
specific magic. Be glad that some people did that job for you.

Basic tools. Functions that implement a task (such as strtod) that often occurs
in programming in C and for which it is important that the interface is fixed. These
should be implemented relatively efficiently because they are used a lot, and they should
be well tested and bug free so we can rely safely on them. Implementing such functions
should, in principle, be possible for any confirmed C programmer.Fxs 611

A function like print£ can be viewed as targeting both purposes: it can effectively
be separated into a formatting phase, providing a basic tool and an output phase that
is platform specific. There is a function snprint£ (explained much later, in subsec-
tion 14.1) that provides the same formatting functionalities as print £ but stores the
result in a string. This string could then be printed with puts to give the same output
as printf as a whole.

In the following sections, we will discuss the different header files that declare the
interfaces of the C library (subsection 8.1.1), the different types of interfaces it provides
(subsection 8.1.2), the various error strategies it applies (subsection 8.1.8), an optional
series of interfaces intended to improve application safety (subsection 8.1.4), and tools
that we can use to assert platform-specific properties at compile time (subsection 8.1.5).

[Exs 611yyrie a function my_strtod that implements the functionality of strtod for decimal floating-point
constants.
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TasLE 8.1. C library headers

Name Description Section
<assert.h> Asserting runtime conditions 8.8
<complex.h> Complex numbers 5.7.8
<ctype.h> Character classification and conversion 85
<errno.h> Error codes 8.1.3
<fenv.h> Floating-point environment 15.1.4
<float.h> Properties of floating-point types 5.7
<inttypes.h> Formatting conversion of integer types 5.7.6
<iso0646.h> Alternative spellings for operators 18.1.2
<limits.h> Properties of integer types 5.1.8
<locale.h> Internationalization 8.7
<math.h> Type-specific numerical functions 8.3
<setjmp.h> Non-local jumps 19.5
<signal.h> Signal-handling functions 19.6
<stdalign.h> Alignment of objects 12.7
<stdarg.h> Functions with varying numbers of argu- 17.4.2
ments
<stdatomic.h> Atomic operations 19.6
<stdbit.h> Bit operations 5.7.2
<stdbool.h> Booleans 3.1
<stdckdint.h> Checked integer arithmetic 8.2
<stddef.h> Basic types and macros 52
<stdint.h> Exact-width integer types 5.7.6
<stdio.h> Input and output 8.4
<stdlib.h> Basic functions 92
<stdnoreturn.h> Non-returning functions 7
<string.h> String handling 8.5
<tgmath.h> Type-generic numerical functions 8.3
<threads.h> Threads and control structures 20
<time.h> Handling time 8.6
<uchar.h> Unicode characters 14.8
<wchar.h> Wide strings 14.3
<wctype.h> Wide character classification and conversion 14.3
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8.1.1. Headers. The C library has alot of functions, far more than we can handle in
this book. A header® file bundles interface descriptions for a number of features, mostly
functions. The header files that we will discuss here provide features of the C library,
but later we can create our own interfaces and collect them in headers (section 10).

On this level, we will discuss the functions from the C library that are necessary
for basic programming with the elements of the language we have seen so far. We
will complete this discussion on higher levels, when we discuss a range of concepts.
Table 8.1 has an overview of the standard header files.

8.1.2. Interfaces. Most interfaces in the C library are specified as functions, but
implementations are free to chose to implement them as macros, where doing so is
appropriate. Compared to those we saw in subsection 5.6.3, this uses a second form of
macros that are syntactically similar to functions, function-like macros:

|
| #define putchar (A) putc(a, stdout) \
!

As before, these are just textual replacements, and since the replacement text may
contain a macro argument several times, it would be bad to pass any expression with
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TasLE 8.2. Errorreturn strategies for C library functions. Some func-
tions may also indicate a specific error condition through the value of
the errno macro.

Failure return Test Typical case Example
null pointer 'value Other values are valid fopen
Special error code value == code | Other values are valid puts, clock,
mktime,
strtod,
fclose
Nonzero value value Value otherwise un- | £getpos,
needed fsetpos
thrd_create
Special success code | value != code | Case distinction for fail-
ure condition

] Negative value ‘ value < 0 ‘ Positive value is a counter ‘ printf

side effects to such a macro or function. Hopefully, our previous discussion about side
effects (takeaway 4.3 #2) has already convinced you not to do that.

Some of the interfaces we will look at have arguments or return values that are
pointers. We can’t handle these completely yet, but in most cases we can get away with
passing in known pointers or nullptr for pointer arguments. Pointers as return values
will only occur in situations where they can be interpreted as an error condition.

8.1.8. Error checking. C library functions usually indicate failure through a special
return value. What value indicates the failure can be different and depends on the
function itself. Generally, you have to look up the specific convention in the manual
page for the functions. Table 8.2 gives a rough overview of the possibilities. There are
three categories that apply: a special value that indicates an error, a special value that
indicates success, and functions that return some sort of positive counter on success and
a negative value on failure.

Typical error-checking code looks like the following:

if (puts("hello_world") == EOF) ({
perror ("can’t_output_to_terminal:");
exit (EXIT_FAILURE) ;

Here we see that puts [alls into the category of functions that return a special value
<stdio.h> on error, EOF, (“end-of-file”). The perror function from <stdio.h> is then used
to provide an additional diagnostic that depends on the specific error. exit ends the

program execution. Don’t sweep failures under the carpet.

Takeaway 8.1.8 #1  Failure is always an option.

Takeaway 8.1.8 #2  Check the return value of library functions for errors.

An immediate failure of the program is often the best way to ensure that bugs are
detected and get fixed early in development.

Takeaway 8.1.3 #3  Fuil fast, fail early, and fail often.

C has one major state variable that tracks errors of C library functions: a dinosaur
called errno. The perror function uses this state under the hood to provide its di-

agnostic. If a function fails in a way that allows us to recover, we have to ensure that
@
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the error state also is reset; otherwise, the library functions or error checking might get
confused:

void puts_safe (char const s[static 1]) {
static bool failed = false;
if (!failed && puts(s) == EOF) ({

perror ("can’t _output_to_terminal:");
failed = true;
errno = 0;

8.1.4. Bounds-checking interfaces. Many of the functions in the C library are vulner-
able to buffer overflow® if they are called with an inconsistent set of parameters. This
led (and still leads) to a lot of security bugs and exploits and is generally something that
should be handled very carefully.

C11 addressed this sort of problems by deprecating or removing some functions
from the standard and by adding an optional series of new interfaces that check con-
sistency of the parameters at runtime. These are the bounds-checking interfaces of An-
nex K of the C standard. Unlike most other features, this doesn’t come with its own
header file but adds interfaces to others. Two macros regulate access to theses inter-
faces: _ STDC_LIB_EXT1_ tells whether this optional interfaces is supported, and
__ STDC_WANT_LIB EXT1__ switches it on. The latter must be set before any header
files are included:

#if ! STDC_LIB_EXT1

# error "This_code _needs_bounds, _checking interface_Annex, K"
#endif

#define _ STDC_WANT_LIB EXT1 1

#include <stdio.h>

/* Use printf_s from here on. =*/

This mechanism was (and still is) open to much debate, and therefore Annex K is
an optional feature. Many modern platforms have consciously chosen not to support it.
There even has been an extensive study by O’Donell and Sebor [2015] that concluded
that the introduction of these interfaces has created many more problems than it solved.
In the following, such optional features are marked with a gray background:

The bounds-checking functions usually use the suffix _s on the name of the library
function they replace, such asprint £ s forprint£. So you should not use that suffix
for code of your own.

Takeaway 8.1.4 #1  Identifier names terminating with __s are reserved.

If such a function encounters an inconsistency, a runtime constraint violation®,
it usually should end program execution after printing a diagnostic.

8.1.5. Platform preconditions. An important goal of programming with a standard-
ized language such as C is portability. We should make as few assumptions about the
execution platform as possible and leave it to the C compiler and library to fill in the
gaps. Unfortunately, this is not always an option, in which case we should clearly iden-
tify code preconditions.

Takeaway 8.1.5 #1  Missed preconditions for the execution platform must abort compilation.

Annex K
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The classic tools to achieve this are preprocessor conditionals®, as we saw earlier:

#if ! _STDC LIB EXT1_
# error "This_code_needs_bounds, _checking interface_Annex, K"
#endif

As you can see, such a conditional starts with the token sequence #i£ on a line and
terminates with another line containing the sequence #endif. The #error directive
in the middle is executed only if the condition (here ! __STDC_LIB_EXT1__ ) is true.
It aborts the compilation process with an error message; a similar #warning directive
allows compilation to continue but ensures that a warning message is provided. The

conditions that we can place in such a construct are limited.Fxs 21

Takeaway 8.1.5 #2  In a preprocessor conditional, only evaluate macros and integer literals.

As an extra feature in these conditions, identifiers that are unknown evaluate to 0.
So, in the previous example, the expression is valid even if __STDC_LIB EXT1__ is
unknown at that point.

Takeaway 8.1.5 #3  In a preprocessor conditional, unknown identifiers evaluate to 0.

There are special operators in preprocessor conditionals that can query special ca-
pacities of the compiler and if specific resources are available.

TasLE 8.8. Tests for preprocessor conditionals. The result is true if
the corresponding feature named as an argument is supported, and
false otherwise.

operator ‘ argument
defined macro name
__has_include header name
__has_embed binary file name

_ _has_c_attribute | attribute name

The defined test has even shortcuts that integrate directly in the # syntax.

TasLE 8.4. Shortcuts for preprocessor conditionals

shortcut ‘ meaning ‘ availability
#ifdef (X) #if defined (X)
#ifndef (X) #if !defined (X)

#elifdef (X) #elif defined (X) since C23
#elifndef (X) | #elif 'defined (X) | since C23

If we want to test more sophisticated conditions that are not known to the pre-
processor but only in subsequent compilation phases, static_assert can be used.
Here, the guaranty is that the condition is always evaluated at compile time but after

preprocessing:
static_assert (sizeof (double) == sizeof (long double),
"Extra_precision_needed_for convergence.");

Before C23, the keyword was written _Static_assert, and static_assert
<assert.h> was available as a macro from <assert .h>.

[Exs 62lyyrice a preprocessor condition that tests whether int has two’s complement sign representation.
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TasLE 8.5. Functions for integer arithmetic. Most of these are type-
generic macros, but some also have function interfaces for specific
types. x and y denote the arguments,  is a bitwise complement, w
the width, and m the maximum value of the type.

Function

Description

Remark

abs, labs, 11labs
div, 1div, 11div

||
x/y and x%y

type independent
type independent

ckd_add z+y (LS bits) & overflow flag  target dependent
ckd_mul x*y (LS bits) & overflow flag target dependent
ckd_sub x—y (LS bits) & overflow flag target dependent
stdc_bit_ceil 9Tlogy 2T 1lifz=0,0ix >m/2
stdc_bit_floor 9llogy z] Oifx=0
stdc_bit_width 1+ [logg ] Oifx=0
stdc_count_ones Number of 1-bits in & type independent

stdc_count_zeros
stdc_has_single_bit

Number of 1-bits in
there is n with x = 2"

type dependent
type independent

stdc_first_leading one
stdc_first_leading zero

w — | logy x|
w— | logy 7|

Oifx =

0 if z has all bits set

0

stdc_leading ones w— | logg|—1 wifz=0
stdc_leading_ zeros w—|loggx| -1 wifz=0
stdc_first_trailing one  Oneplus LS 1-bitinx Oifz=0
stdc_first_trailing zero One plus LS 0-bitinx Oifx =

stdc_trailing_ones One plus LS 0-bit in wifz=0
stdc_trailing_zeros One plus LS 1-bitin wifz=0

8.2. Integer arithmetic. Much of the functionality for integer arithmetic is al-
ready defined by operators. The C library adds some functionality to that, where there
is no closed notation available or where care has to be taken when specific arguments
values need special considerations. Most of these functions are new in C23. Table 8.5
has an overview

There are several functions that provide access to usual integer arithmetic. The
first two families, abs and div, come with the <stdlib.h> header, and an 1 prefix
stands for a long argument and 11, for long long. The abs functions are provided
as a convenience interface because C does not have a closed notation for the absolute
value of a signed integer. Also, the expression for it,

|
‘ (x < 0) 2 -x : x
!

would evaluate x twice.
The div functions have a bit more importance because they simultaneously pro-
vide the result of two operations, quotient and remainder:

auto res = div(x, y);
printf ("%d/%d_is %d, remainder %d\n", x, y, res.quot, res.rem);

The return types of these functions are structures, but the names of these structures
should not concern you much. With C23, it is easier to capture the returned value by
inferring its type through auto as indicated. For all three div functions, the specific
values can then be accessed by the quot and rem members. Nowadays, optimizing
compilers are generally good in collecting quotient and remainder operations that can
be fused into a single instruction, so these interfaces are not of much use anymore.

<stdlib.h>
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Quotient and remainder operations are well-defined for most values; exceptions
are only division by 0 and some combinations of INT_MIN and similar. For the other
three usual arithmetic operations, addition, subtraction and multiplication, there are
unfortunately many more situations. Writing correct C code that predicts if such an
operation has a result that is out of bounds is relatively challenging. So the next three
type-generic functions in the table have been introduced by C23 with the new header
<stdckdint .h>. They provide the result of the operation through their first argu-
ment (which is a pointer) and return a Boolean that is true whether the operation
overflowed. In any case, the operation is unconditionally valid; the result value has the
least significant bits of the correct result:

unsigned result = 0;
bool overflow = ckd_add(&result, UINT_MAX, UINT MAX);
printf ("Overflow,_flag_%s, _result_%$x\n",

(overflow ? "true" : "false"),

result) ;

Here, all types are unsigned, so the result is just reduced modulo as for usual
arithmetic for unsigned values. In the example, this is UINT_MAX-1. Additionally, the
return of the call is t rue to reflect that the result with arbitrary precision has the value
2XUINT_MAX, which doesn’t fit in an unsigned.

Now, change the example to use signed types and the minimum value:

signed result = 0;
bool overflow = ckd_add(&result, —-INT_MAX, -INT_MAX);
printf ("Overflow,_flag_%s, _result %x\n",

(overflow ? "true" : "false"),

result) ;

The operation —-INT _MAX + -INT_ MAX overflows, so the evaluation of such an ex-
pression has your program fail. Here, the mathematical result is 2XINT_MIN+2, which
also does not fit into a signed. The call as presented is still well-defined, result has
all bits 0 except for the bit in position 1, and the return value is t rue. So, although the
mathematical result is negative, the call to ckd_add has a result of 2, a positive value.

The other functions concern bit operations. They were also introduced by C23
with a new header, <stdbit.h>, and receive any unsigned integer value of standard
or extended type as an argument. Their return value is as indicated in table 8.5; the
second column has the general formula, and the third shows the result for exceptional
cases where the general formula is not valid. Note the following:

o All functions have defined results for all argument values. This holds even if
the compiler may realize the function for most values with a specific hardware
instruction; it is their task (and not yours) to handle the special cases correctly.

o The first set of functions in the group has descriptive names that are derived
directly from a tangible definition of the property of a number. Prefer these
over the others to improve the readability of your code.

e The second set are all variants that deal with the magnitude of the argument
or of its complement. Only use them if you are really interested in the out-
come of the exceptional cases as they are given. If you have to deal with
the exceptional cases yourself, use stde_bit_width; your compiler knows
much better than you how to optimize such conditional expressions.

e The results of the following functions are independent of the type of the ar-
gument:

stdec_bit floor stdec bit width stdc_count_ones
stdc_has_single_bit stdc_first_trailing_ one
stdc_first trailing zero
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In particular, the latter two make life easier for you or other readers of your
code than other variants with similar functionality. For all six, it is largely
preferable to use the type-generic version of the interface if you can.
e The results of the following functions depend on the width of the type of the

argument:

stdc_bit_ceil stdc_count_zeros stdc_first_leading one

stdc_first leading zero stdc_leading ones
stdc_leading zeros stdc_trailing ones

stdc_trailing zeros

These are a bit more diflicult to capture for your readers. Avoid them if you

can.

8.3. Numerics. Numerical functions come with the <math.h> header, but it is <math.h>
much simpler to use the type-generic macros that come with <tgmath.h>. Basi- <tgmath.h>
cally, for all functions, it has a macro that dispatches an invocation, such as sin (x) or
pow (x, n), to the function that inspects the type of x in its argument and for which
the return value is of that same type.

The type-generic macros that are defined are far too many to describe in detail
here. Table 8.6 gives an overview of the functions that are provided.

Table 8.6: Numerical functions that work with floating point types.

Names followed by [f|1] describe three functions for double,

float, and long double arguments. The others are type-generic

macros that adapt to the concrete type of their arguments.
Function Description
acosh Hyperbolic arc cosine
acos, acospi Arc cosine (divided by ) C23
asinh Hyperbolic arc sine
asin, asinpi Arec sine (divided by ) C23
atan2, atan2pi Arc tangent, two arguments (divided by ) C23
atanh Hyperbolic arc tangent
atan, atanpi Arc tangent (divided by ) C23
canonicalize[f|1] Canonicalize a floating point value
cbrt Iz
ceil [2]
compoundn (1+x)" Cc23
copysign Copies the sign from y to x
cosh Hyperbolic cosine
cos, cospi Cosine function, cosx (cos ) C23
erfc Complementary error function, 1 — \% for et dt
erf Error function, % /01 e dt
exp2 9
expml et —1
exp e’
fabs || for floating point
fadd, dadd Rounded addition to £loat or double C23
fdim Positive difference
fdiv, ddiv Rounded division to £loat or double Cc23
floor L]
fmaximum_ mag[_num] Floating-point value of maximal magnitude C23
fmax, fmaximum|[_num] Floating-point maximum C23
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Table 8.6: Numerical functions, continued.

Function

Description

fma

fminimum mag[_num]
fmin, fminimum|[_ num]
fmod

fmul, dmul
fpclassify
frexp
fromfp[f|1]
fsub, dsub
hypot

ilogb

isfinite

isinf

isnan

isnormal

ldexp

lgamma

loglo0

loglp

log2

logb

log

modf [f|1]
nan[f|1]
nearbyint
nextafter
nexttoward
nextup

pow

pown

powr
remainder
remquo

rint, lrint, l11lrint
rootn

round, 1round, 11round
roundeven
scalbn, scalbln
signbit

sinh

sin, sinpi

sqgrt

tanh

tan, tanpi
tgamma

trunc
ufromfp[f|1]

T-y+z

Floating-point value of minimal magnitude
Floating-point minimum

Remainder of floating-point division

Rounded multiplication to £1loat or double
Classifies a floating-point value

Significand and exponent

Round to signed integer value with specific width
Rounded subtraction to £loat or double

| loggrr raprx*| as integer

Checks if finite

Checks if infinite

Checks if NaN

Checks if representation is normal

x-

log, I'(x)

logjgx

log, (1 +x)

logg

logerr raprx @ as floating point

log,z

Integer and fractional parts

Not-a-number (NaN) of the corresponding type
Nearest integer using the current rounding mode
Next representable floating-point value

PN

2", n integer

2, computed as ¢ 108 ¢

Signed remainder of division

Signed remainder and the last bits of the division
Nearest integer using the current rounding mode
fx

sign (x) |_|x| + O.5J, integer
sign(x)-Ux|+(L5J,ﬂoaﬁngpohn

x - FLT RADIX

Checks if negative

Hyperbolic sine

Sine function, sinx (sin 7x)

vz

Hyperbolic tangent

Tangent function, tanx (tan 7rx)

Gamma function, I'(x)

sign(x)'Ux”

Round to unsigned integer value with specific width

C23
C23
C23

C23
C23

C23
C23

C23

C23

C23

C23

C23
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Nowadays, implementations of numerical functions should be high quality, be ef-
ficient, and have well-controlled numerical precision. Although any of these func-
tions could be implemented by a programmer with sufficient numerical knowledge,
you should not try to replace or circumvent them. Many of them are not just imple-
mented as C functions but also can use processor-specific instructions. For example,
processors may have fast approximations of sgrt and sin functions or implement a
Sfloating-point multiply add, £ma, in a low-level instruction. In particular, there is a good
chance that such low-level instructions are used for all functions that inspect or mod-
ify floating-point internals, such as carg, creal, fabs, frexp, 1dexp, 11round,
lround, nearbyint, rint, round, scalbn, and trunc. So, replacing them or
re-implementing them in handcrafted code is usually a bad idea.

8.4. Input, output, and file manipulation. We have seen some of the 10 func-
tions that come with the header file <stdio.h>: puts and print£f. Whereas the
second lets you format output in a convenient fashion, the first is more basic: it just
outputs a string (its argument) and an end-of-line character.

8.4.1. Unformatted text output. There is an even more basic function than puts:
putchar, which outputs a single character. The interfaces of these two functions are
as follows:

int putchar(int c);
int puts(char const s([static 1]);

The type int as a parameter for putchar is a historical accident that shouldn’t
hurt you much. In contrast to that, having a return type of int is necessary so the func-
tion can return errors to its caller. In particular, it returns the argument c if successful
and a specific negative value EOF (end-of-file) that is guaranteed not to correspond to
any character on failure.

With this function, we could actually re-implement puts ourselves:

int puts_manually (char const s[static 1]) {
for (size_t i = 0; s[i]; ++i) {
if (putchar(s[i]) == EOF) return EOF;
}
if (putchar(’\n’) == EOF) return EOF;
return 0;

This is just an example; it is probably less efficient than the put s that your platform
provides.

Up to now, we have only seen how to output to the terminal. Often, you’ll want
to write results to permanent storage, and the type FILEx for streamsC provides an
abstraction for this. There are two functions, £puts and £putc, that generalize the
idea of unformatted output to streams:

int fputc(int c, FILEx stream);
int fputs (char const s[static 1], FILEx stream);

Here, the * in the FILE« type again indicates that this is a pointer type, and we
won’t go into the details. The only thing we need to know for now is that a pointer can
be tested to determine whether it is null (takeaway 6.2 #4), so we will be able to test
whether a stream is valid.

The identifier FILE represents an opaque typeC, for which we don’t know more
than is provided by the functional interfaces that we will see in this section. The fact
that it is implemented as a macro, and the misuse of the name “FILE” for a stream is a
reminder that this is one of the historical interfaces that predate standardization.

<stdio.h>

Qv
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Takeaway 8.4.1 #1  Opaque types are specified through functional interfaces.

Takeaway 8.4.1 #2  Don’t rely on implementation details of opaque rypes.

If we don’t do anything special, two streams are available for output: stdout and
stderr. We have already used stdout implicitly: this is what putchar and puts
use under the hood, and this stream is usually connected to the terminal. stderr is
similar and also is linked to the terminal by default, with perhaps slightly different prop-
erties. In any case, these two are closely related. The purpose of having two of them is
to be able to distinguish “usual” output (stdout) from “urgent” output (stderr).

We can rewrite the previous functions in terms of the more general ones:

int putchar_manually(int c) {
return fputc(c, stdout);
}

int puts_manually (char const s[static 1]) {

if (fputs(s, stdout) == EOF) return EOF;
if (fputc(’\n’, stdout) == EOF) return EOF;
return 0;

Observe that £puts differs from puts in that it doesn’t append an end-of-line
character to the string.

Takeaway 8.4.1 #3 puts and fputs differ in their end-of-line handling.

8.4.2. Files and streams. If we want to write output to real files, we have to attach
the files to our program execution by means of the function fopen:

FILEx fopen (char const path[static 1], char const mode[static 1]);
FILEx freopen (char const path[static 1], char const mode[static 1],
FILE xstream);

This can be used as simply as here:

int main (int argc, charx argv[argc+l]) {
FILEx logfile = fopen ("mylog.txt", "a");
if (!logfile) {
perror ("fopen _failed");
return EXIT FAILURE;
}
fputs ("feeling,_fine_today\n", logfile);
return EXIT_ SUCCESS;
}

This opens a file® called "mylog.txt" in the filesystem and provides access to it
through the variable 1ogfile. The mode argument "a" opens the file for appending;
that is, the contents of the file are preserved, if they exist, and writing begins at the
current end of that file.

There are multiple reasons why opening a file might not succeed: for example,
the filesystem might be full, or the process might not have permission to write at the
indicated place. We check for such an error condition (takeaway 8.1.3 #2) and exit the
program if necessary.

As we have seen, the perror function is used to give a diagnostic of the error that
occurred. It is equivalent to something like the following:

| |
‘fputs("fopenufailed:usomefdiagnostic\n", stderr) ;
! |

This “some-diagnostic” might (but does not have to) contain more information that
helps the user of the program deal with the error.




Annex K

8. C LIBRARY FUNCTIONS 117

TasLE 8.7. Modes and modifiers for £open and £reopen. One of
the first three must start the mode string, optionally followed by one
or more of the other three. See table 8.8 for all valid combinations.

Mode Memo File status after fopen

ra’ Append | w | File unmodified; position at end

"w'! Write w | Content of file wiped out, if any

"r’ Read r | File unmodified; position at start

Modifier | Memo Additional property

"7 Update rw | Opens file for reading and writing

"b’ Binary Views as a binary file; otherwise a text file

"%’ Exclusive Creates a file for writing if it does not yet exist

There are also bounds-checking replacements fopen_s and freopen_s, which
ensure that the arguments that are passed are valid pointers. Here, errno_t is a type
that comes with <stdlib.h> and encodes error returns. The restrict keyword

that also newly appears only applies to pointer types and is out of our scope for the
moment:

errno_t fopen_s (FILE+x restrict streamptr[restrict],
char const filename|[restrict], char const mode[restrict])
’
errno_t freopen_ s (FILEx restrict newstreamptr[restrict],
char const filename[restrict], char const mode[restrict

]I
FILEx restrict stream);

There are different modes to open a file; "a" is only one of several possibilities.
Table 8.7 contains an overview of the characters that may appear in that string. Three
base modes regulate what happens to a pre-existing file, if any, and where the stream
is positioned. In addition, three modifiers can be appended to them. Table 8.8 has a
complete list of the possible combinations.

These tables show that a stream can be opened not only for writing but also for
reading; we will see shortly how that can be done. To know which of the base modes
opens for reading or writing, just use your common sense. For  a’ and ’ w’ , a file that
is positioned at its end can’t be read since there is nothing there; thus, these open for
writing. For 7 7, file content that is preserved and positioned at the beginning should
not be overwritten accidentally, so this is for reading.

The modifiers are used less commonly in everyday coding. “Update” mode with
"+’ should be used carefully. Reading and writing at the same time is not easy and
needs some special care. For ’ b’ , we will discuss the difference between text and binary
streams in more detail in subsection 14.6.

There are three other principal interfaces to handle streams, £reopen, fclose,
and ££1ush:

FILE »freopen (const char xpathname, const char xmode, FILE x*stream);
int fclose (FILEx fp);
int fflush (FILE+ stream);

The primary uses for £reopen and £close are straightforward. £reopen can
associate a given stream to a different file and eventually change the mode. This is
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TaBLE 8.8. Mode strings for fopen and freopen. These are the
valid combinations of the characters in table 8.7.

g Creates an empty text file il necessary; open for writing at end-
of-file

" Creates an empty text file or wipes out content; open for writ-
ing

"rh Opens an existing text file for reading

gt Creates an empty text file if necessary; open for reading and
writing at end-of-file

"yt Creates an empty text file or wipes out content; open for read-
ing and writing

"r4m Opens an existing text file for reading and writing at beginning
of file

"ab" "rb" Same as above, but for a binary file instead of a text file

"wb" "at+tb"

"ab+" "r+b"

"rb+"  "w+b"

"wb+"

"wx" "w+x" Same as above, but error if the file exists prior to the call

"whx" "w+bx"

"wbh+x"

particularly useful for associating the standard streams to a file. For example, our little
program from our previous discussion could be rewritten as

int main (int argc, charx argv[argc+l]) {
if (!freopen("mylog.txt", "a", stdout)) {
perror ("freopen failed");
return EXIT FAILURE;
}
puts ("feeling_fine_today");
return EXIT SUCCESS;
}

8.4.8. Text I0. Output to text streams is usually buffered” ; that is, to make more
eflicient use of its resources, the 10 system can delay the physical write of to a stream.
If we close the stream with £close, all buffers are guaranteed to be flushed” to where
it is supposed to go. The function ££1ush is needed in places where we want to see
output immediately on the terminal or where don’t want to close the file yet but want to
ensure that all content we have written has properly reached its destination. Listing 8.1
shows an example that writes 10 dots to stdout with a delay of approximately one
second between all writes.[Fxs 631

The most common form of 10 buffering for text files is line buffering®. In that
mode, output is only physically written if the end of a text line is encountered. So
usually, text that is written with puts appears immediately on the terminal; £puts
waits until it encounters an ’ \n’ in the output. Another interesting thing about text
streams and files is that there is no one-to-one correspondence between characters that
are written in the program and bytes that land on the console device or in the file.

Takeaway 8.4.3 #1  Text input and output converts data.

[Exs 63l0bserve the behavior of the program by running it with zero, one, and two command-line arguments.
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Listing 8.1. Flushing buffered output

#include <stdio.h>

/+ delay execution with some crude code,
should use thrd_sleep, once we have that =/
void delay (double secs) {
double const magic = 4E8; // works just on my machine
unsigned long long const nano = secs x magic;
for (unsigned long volatile count = 0;
count < nanoj;
++count) {
/* nothing here =*/

int main (int argc, [[maybe unused]] charx argv[argc+l]) {
fputs ("waiting_10_seconds_for you _to stop me", stdout);
if (argc < 3) fflush(stdout);
for (unsigned i = 0; i < 10; ++1i) {
fputc ('’ .’, stdout);
if (argc < 2) fflush(stdout);
delay (1.0);
}
fputs ("\n", stdout);
fputs ("You, _did _ignore_me, ,so_bye bye\n", stdout);

Text input and output converts data because internal and external representations
of text characters are not necessarily the same. Unfortunately, there are still many dif-
ferent character encodings; the C library is in charge of doing the conversions correctly,
if it can. Most notoriously, the end-of-line encoding in files is platform dependent.

Takeaway 8.4.8 #2  There are three commonly used conversion to encode end-of-line.

C gives us a very suitable abstraction in using ’ \n’ for this, regardless of the plat-
form. Another modification you should be aware of when doing text 1O is that white
space that precedes the end of line may be suppressed. Therefore, the presence of
trailing white space® such as blank or tabulator characters cannot be relied upon and

should be avoided.

Takeaway 8.4.8 #3  Text lines should not contain trailing white space.

The C library additionally also has very limited support for manipulating files
within the filesystem:

int remove (char const pathname[static 1]);
int rename (char const oldpath[static 1], char const newpath[static 1]);

These basically do what their names indicate.

8.4.4. Formatted output. We have covered how to use print £ for formatted out-
put. The function £print£ is very similar to that, but it has an additional parameter
that allows us to specify the stream to which the output is written:
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TasLe 8.9. Format specifications for print £ and similar functions
with the general syntax "% [FF] [WW] [ .PP] [LL]SS", where []
surrounding a field denotes that it is optional

FF  Flags Special form of conversion
WW  Field width minimum width

PP Precision

LL Modifier Select width of type

SS  Specifier Select conversion

TasLe 8.10. Format specifiers for print £ and similar functions

rd’ or’i’ Decimal Signed integer
ru’ Decimal Unsigned integer
"o Binary Unsigned integer
"o’ Octal Unsigned integer
"x’ or ' X’ Hexadecimal Unsigned integer
e’ or’E’ [-]d.ddd ezxdd, “scientific” Floating point
"fr or’F’ [-]1d.ddd Floating point
g’ or’G’ genericeorf Floating point
"a’ or A’ [-]10xh.hhhh p+d, Hexadecimal Floating point
"% "%’ character No argument is converted.
rc’ Character Integer
rs’ Characters String
"p’ Address void~ pointer
int printf (char const format[static 1], ...);
int fprintf (FILEx stream, char const format[static 1], ...);
The syntax with the three dots . . . indicates that these functions may receive an

arbitrary number of items (called trailing arguments®) that are to be printed. An
important constraint is that this number must correspond exactly to the  $’ specifiers;
otherwise, the program fails.

Takeaway 8.4.4 #1  Trailing arguments in calls to print £ must exactly correspond to the
Jormat specifiers.

With the syntax $ [FF] [WW] [ .PP] [LL] SS, a complete format specification can
be composed of five parts: flags, width, precision, modifiers, and specifier. See table 8.9
for details. The specifier is not optional and selects the type of output conversion that
is performed. See table 8.10 for an overview.

As you can see, for most types of values, there is a choice of format. You should
chose the one that is most appropriate for the meaning of the value that the output is to
convey. For all numerical values, this should usually be a decimal format.

Takeaway 8.4.4 #2 Use "$d" and "%u" formats to print integer values.

If, on the other hand, you are interested in a bit pattern, use the binary (small bit
sets) or hexadecimal (large ones) formats over octal. It better corresponds to modern
architectures that have 8-bit character types.

Takeaway 8.4.4 #3  Use the "$b " or "$x" formals to print bit patterns.
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Also observe that these formats receives unsigned values, which is yet another in-
centive to use only unsigned types for bit sets. Hexadecimal representations are better
suited than binary if the sets become big, but seeing hexadecimal values and associat-
ing the corresponding bit pattern requires training. Table 8.11 has an overview of the
digits, the values and the bit pattern they represent.

TasLE 8.11. Hexadecimal values and bit patterns

Digit Value Pattern Digit Value Pattern
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 A 10 1010
3 3 0011 B 11 1011
4 4 0100 C 12 1100
5 5 0101 D 13 1101
6 6 0110 E 14 1110
7 7 0111 F 15 1111

For floating-point formats, there is even more choice. If you do not have specific needs,
the generic format is the easiest to use for decimal output.

Takeaway 8.4.4 #4  Use the "%g" format to print floating-point values.

The modifier part is important to specify the exact type of the corresponding argu-
ment. Table 8.12 gives the codes for the standard types. This modifier is particularly
important because interpreting a value with the wrong modifier can cause severe dam-
age. The print £ functions only have knowledge about their arguments through the
format specifiers, so giving a function the wrong size may lead it to read more or fewer
bytes than provided by the argument or to interpret the wrong hardware registers.

Takeaway 8.4.4 #5  Using an inappropriate format specifier or modifier makes the behavior
undefined.

A good compiler should warn about wrong formats; please take such warnings seri-
ously. Note also the presence of special modifiers for semantic types. In particular, the

TasLe 8.12. Format modifiers for print£ and similar functions.
float arguments are first converted to double.

Character | Type Conversion
"hh" char types Integer
"h" short types Integer
" signed, unsigned Integer
"L long integer types integer
"1 long long integer types Integer
"y intmax_t,uintmax_t Integer
AL size t Integer
" ptrdiff t Integer
"wN" uintN_t, intN_t, | Integer
uint_leastN_t or int_leastN_t
for N usually 8, 16, 32, 64 or 128
"WwEN" uint_ fastN_t orint_fastN_t Integer
"L long double Floating point
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TasLe 8.13. Format flags for print £ and similar functions

Character | Meaning Conversion

" Alternate form, such as prefix 0x "aAeEfFgGoxX"
"o" Z.ero padding Numeric

n_n Left adjustment Any

" * 7 for positive values, ' =’ for negative | Signed

R "+’ for positive values, ' =’ for negative | Signed

combination "$zu" is very convenient because we don’t have to know the base type to
which size_t corresponds.

The width (Ww) and precision (. PP) can be used to control the general appearance
of a printed value. For example, for the generic floating-point format "%g", the pre-
cision controls the number of significant digits. A format of "$20.10g" specifies an
output field of 20 characters with at most 10 significant digits. How these values are
interpreted specifically differs for each format specifier.

The flag can change the output variant, such as prefixing with signs ("%+d"), 0x
for hexadecimal conversion ("%#X"), 0 for octal ("%#0"); padding with 0; or adjusting
the output within its field to the left instead of the right. See table 8.13. Remember
that a leading zero for integers is usually interpreted as introducing an octal number,
not a decimal. So, using zero padding with left adjustment "%$-0" is not a good idea
because it can confuse the reader about the convention that is applied.

If we know that the numbers we write will be read back in from a file later, the
forms "%+d" for signed types, "$#X" for unsigned types, and "%a" for floating point
are the most appropriate. They guarantee that the string-to-number conversions will
detect the correct form and that the storage in a file will not lose information.

Takeaway 8.4.4 #6 Use "$+d", "$#X", and "%a" for conversions that have to be read
later.

Annex K

The optional interfaces print£f_s and fprint£f_s check that the stream, the
format, and any string arguments are valid pointers. They don’t check whether the
expressions in the list correspond to correct format specifiers:

int printf s (char const format[restrict], ...);
int fprintf s (FILE xrestrict stream,
char const format [restrict], ...);

Here is a modified example for re-opening stdout:

int main(int argc, charx argv[argc+l]) {
int ret = EXIT FAILURE;
fprintf_ s (stderr, "freopen_of _%s:", argv[l]);
if (freopen(argv([l], "a", stdout)) {

ret = EXIT_SUCCESS;

puts ("feeling, fine_today");
}
perror (0);
return ret;

}

This improves the diagnostic output by adding the filename to the output string. fprintf_s
is used to check the validity of the stream, the format, and the argument string. This
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function may mix the output of the two streams if they are both connected to the same
terminal.

8.4.5. Unformatted text input. Unformatted input is best done with £getec for a
single character and £gets for a string. The stdin standard stream is always defined
and usually connects to terminal input:

int fgetc (FILE*x stream);
charx fgets(char s[restrict], int n, FILEx restrict stream);
int getchar (void) ;

Annex K

getchar and gets_s also read from stdin, but they don’t add much to the
previous interfaces that are more generic:

[
‘char* gets_s (char s[static 1], rsize_t n);
L

Historically, in the same spirit in which puts specializes £puts, the prior version
of the C standard had a gets interface. Its buffer overflow handling was inherently
unsafe, and so it has been removed from the C standard.

Takeaway 8.4.5 #1  Don’t use gets.
The following listing shows a function that has functionality equivalent to £gets.

LisTING 8.2. Implementing £gets in terms of fgetc

1 |charx fgets_manually (char s|[restrict], int n,
2 FILExrestrict stream) {
3 if (!stream) return nullptr;

4 if (!'n) return s;

5 /* Reads at most n-1 characters x/

6 for (size_t i = 0; 1 < n-1; ++1) {

7 int val = fgetc(stream);

8 switch (val) {

9 /* EOF signals end-of-file or error =/
10 case EOF: if (feof (stream)) {

11 s[i] = 0;

12 /* Has been a valid call =/

13 return s;

14 } else {

15 /* Error =/

16 return nullptr;

17 }

18 /* Stop at end-of-line. =*/

19 case '\n’: s[i] = val; s[i+l] = 0; return s;
20 /+ Otherwise just assign and continue. =/
21 default: s[i] = val;
22 }
23 }
24 s[n-1] = 0;
25 return s;
26 |}

Again, such example code is not meant to replace the function but to illustrate
properties of the functions in question: here, the error-handling strategy.
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Takeaway 8.4.5 #2 fgetc returns int to be able to encode a special error status, EOF,
in addition to all valid characters.

Also, detecting a return of EOF alone is not sufficient to conclude that the end of

the stream has been reached. We have to call £eof to test whether a stream’s position
has reached its end-of-file marker.

Takeaway 8.4.5 #3  End-of-file can only be detected alter a failed read.
Listing 8.8 presents an example that uses both input and output functions.

LisTiNG 8.3. A program to dump multiple text files to stdout

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

enum { buf_max = 32, };

int main (int argc, charx argv[argc+l]) {
int ret = EXIT FAILURE;
char buffer[buf_max] = { };
for (int 1 = 1; i < argc; ++1i) { // Processes args
FILEx instream = fopen(argv[i], "r"); // as filenames
if (instream) {
while (fgets (buffer, buf_max, instream)) {
fputs (buffer, stdout);
}
fclose (instream) ;
ret = EXIT_SUCCESS;
} else {
/* Provides some error diagnostic. =*/
fprintf (stderr, "Could_not _open_%s:", argv[i]);
perror (0) ;
errno = 0; // Resets the error code

}
return ret;

This is a small implementation of cat that reads a number of files that are given
on the command line and dumps the contents to stdout Exs 641[Exs 65][Exs 66](Exs 67]

8.5. String processing and conversion. String processing in C has to deal with
the fact that the source and execution environments may have different encodings. It is
therefore crucial to have interfaces that work independently of the encoding. The most
important tools are given by the language itself: integer character constants, such as ” a’
and ' \\n’, and string literals, such as "hello:\tx", should always do the right thing
on your platform. As you perhaps remember, there are not necessarily literals for types
that are narrower than int. As a historical artifact, integer character literals, such as

[Exs 64]ynder what circumstances will this program finish with success or failure return codes?

[Exs 6‘r’]Surprisingly, this program even works for files with lines that have more than 81 characters. Why?

[Exs 6] rve (he program read from stdin if no command-line argument is given.

[Exs 67]ave the program precede all output lines with line numbers if the first command-line argument is

n_npw,
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a’, have type int, not char as you would probably expect.ﬁ Handling such literals
can become cumbersome if you have to deal with character classes.
Therefore, the C library provides functions and macros that deal with the most

commonly used classes through the header <ctype.h>. It has the classifier functions

isalnum isalpha isblank iscntrl isdigit isgraph
islower isprint ispunct isspace isupper isxdigit

<ctype.h>

and conversions toupper and tolower. Again, for historical reasons, all of these
take their arguments as int and also return int. See table 8.14 for an overview of the

classifiers. The functions toupper and tolower convert alphabetic characters to the

corresponding case and leave all other characters as they are.

TaBLe 8.14. Character classifiers.

The third column indicates

whether C implementations may extend these classes with platform-
specific characters, such as 7 &’ as a lowercase character or €’ as

punctuation.
Name Meaning C locale Extended
islower Lowercase ral ...zt Yes
isupper  Uppercase . NN Yes
isblank Blank AR AN o Yes
isspace  Space rrOINE P \n L, "\, PA\E, A\ Yes
isdigit  Decimal QT . r9r No
isxdigit Hexadecimal 0’ --- 79", 7a’ .- "£" 'A -.. '/ No
iscntrl Control "Na’,"\b’,"\f’,"\n’,"\r’,"\t’, "\v’ Yes
isalnum Alphanumeric isalpha (x) | |isdigit (x) Yes
isalpha  Alphabet islower (x) | | isupper (x) Yes
isgraph  Graphical ('isentrl (x)) && (x !'= 7 ') Yes
isprint  Printable liscentrl (x) Yes
ispunct Punctuation isprint (x) &&! (isalnum(x) | |isspace(x)) Yes

The table has some special characters, such as * \n’ for a newline character, which
we have encountered previously. All the special encodings and their meaning are given

in table 8.15.

TasLE 8.15. Special characters in character and string literals

"\"" | Quote

A"’ | Double quotes
"\?’ | Question mark
"\\’ | Backslash

"N\a’ | Alert

"\b’ | Backspace
"\f’ | Form feed
'An’ | New line

"\r’ | Carriage return
"\t’ | Horizontal tab
"\v’ | Vertical tab

681, addition, there are character literals u8’ a’, u’a’, and U’ a’ that usually have the types uint8_t,
uintl16_t, and uint32_t, respectively. We will see their use in the following discussion.
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Integer character literals can also be encoded numerically as an octal value of the
form 7\ 037’ or as a hexadecimal value in the form ’ \xFFFF’. In the first form, up to
three octal digits are used to represent the code. For the second, any sequence of charac-
ters after the x that can be interpreted as a hex digit is included in the code. Using these
in strings requires special care to mark the end of such a character: "\xdeBruyn"
is not the same as "\ xde" "Bruyn"ﬁ but corresponds to "\xdeB" "ruyn", the
character with code 8,568 followed by the four characters " r’, u’, 'y’,and 'n’.
Using this feature is only portable in the sense that it will compile on all platforms as
long as a character with code 3,563 exists. Whether it exists and what that character
actually is depends on the platform and the particular setting for program execution.

Takeaway 8.5 #1  The interpretation of numerically encoded characters depends on the ex-
ecution character set.

So, their use is not fully portable and should be avoided.

The following function hexatridecimal uses some ol these functions to pro-
vide a base 86 numerical value for all alphanumerical characters. This is analogous to
hexadecimal literals, only all other letters have a value in base 36, too. Note that lower-
and uppercase letters result in the same values; in particular, the characters 7 a’ and
" A’ both map to the value 10, [Exs 70][Exs 71)[Exs 72]

strtoul ¢

/* Supposes that lowercase characters are contiguous. x/
static_assert ('z’'-"a’ == 25,

"alphabetic_characters_not _contiguous") ;
#include <ctype.h>
/* Converts an alphanumeric digit to an unsigned =x/
/* 0" ... ’9" => 0 .. 9u =/
/x "A" ... 'z’ => 10 .. 35u */
/* Ta’” ... 'z'" => 10 .. 35u */
/* Other values => Greater */

unsigned hexatridecimal (int a) {
if (isdigit(a)) {
/+ This is guaranteed to work: decimal digits
are consecutive, and isdigit is not
locale dependent. =/
return a - '0’;
} else {
/+ Leaves a unchanged if it is not lowercase =x/
a = toupper(a);
/+ Returns value >= 36 if not Latin uppercase */
return (isupper(a)) ? 10 + (a - 'A’) : -1;

}

In addition to strtod, the C library has

strtoul strtol strtoumax strtoimax
strtoull strtoll strtold strtof

69But remember that consecutive string literals are concatenated (takeaway 5.3 #1).

[Exs 70} The second return of hexatridecimal makes an assumption about the relation between a and

’A’. What is it?

[Exs 7D escribe an error scenario in which this assumption is not fulfilled.

[Exs 72]Fiy this bug: that is, rewrite this code such that it makes no assumption about the relation between a
and "A’.
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to convert a string to a numerical value. Here the characters at the end of the names
correspond to the type: u for unsigned, 1 (the lowercased letter L) for 1ong, d for
double, f for float, and [i|u]max for intmax_t and uintmax t.

The interfaces with an integral return type all have three parameters, such as st rtoul

unsigned long int strtoul (char const nptr[restrict],
charx restrict endptr,
int base);

which interprets a string npt r as a number given in base base. Interesting values for
base are 0, 2, 8, 10, and 16. The last four correspond to binary, octal, decimal, and
hexadecimal encoding, respectively. The first, 0, is a combination of these four, where
the base is chosen according to the usual rules for the interpretation of text as numbers:
"7" is decimal, "0b10" is binary, "007" is octal, and "0x7" is hexadecimal. More
precisely, the string is interpreted as potentially consisting of four different parts: white
space, a sign, the number, and some remaining data.

The second parameter can be used to obtain the position of the remaining data,
but this is still too involved for us. For the moment, it suffices to pass a 0 for that pa-
rameter to ensure that everything works well. A convenient combination of parameters
is often strtoul (S, 0, 0), which will try to interpret S as representing a number,
regardless of the input format. The three functions that provide floating-point values
work similarly, only the number of function parameters is limited to two.

Next, we will demonstrate how such functions can be implemented from more
basic primitives. Let us first look at Strtoul_inner. It is the core of a strtoul
implementation that uses hexatridecimal in aloop to compute a large integer from
a string:

strtonl.c
31 |unsigned long Strtoul_inner (char const s[static 1],
32 size t i,
33 unsigned base) {
34 unsigned long ret = 0;
35 while (s[i]) {
36 unsigned c = hexatridecimal (s[i]);
37 if (c >= base) break;
38 /+ Maximal representable value for 64 bit is
39 3wbell264sgsf in base 36 x/
40 if (ULONG_MAX/base < ret) {
41 ret = ULONG_MAX;
42 errno = ERANGE;
43 break;
44 }
45 ret *= base;
46 ret += c;
47 ++1i;
48 }
49 return ret;
50 |}

If the string represents a number that is too big for an unsigned long, this func-
tion returns ULONG_MAX and sets errno to ERANGE. If the string contains no digit
at all, this function just returns 0, and such an error cannot be detected from that re-
turn value. The endpt r parameter of st rtoul could be used for that, if only we had
already mastered pointers well enough.

Now Strtoul gives a functional implementation of strtoul, as far as this can
be done without pointers:
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unsigned long Strtoul (char const s[static 1], unsigned base) {
if (base > 36u) { /+ Tests if base */
errno = EINVAL; /+ Extends the specification =/
return ULONG_MAX;
}
size t 1 = strspn(s, " _\f\n\r\t\v"); /% Skips spaces */
bool switchsign = false; /* Looks for a sign */
switch (s[i]) {
case '’
switchsign = true;
[[fallthrough]];
case '+’
GFral g
}
/* Test 1f there is anything left in the string. */
if (!s[i]) return 0;
if (!base || base == 16 || base == 2) { /* use prefix x/
size_t adj = find prefix(s, i, "O0x");
switch (adj) {
case 2: // There is a 0x or a O0X prefix
if (!base || base == 16) base = 16;

// If we are looking for another base, the x is the end
else return 0;
break;
case 1: // There is a 0 prefix
adj = find_prefix(s, i, "Ob");

switch (adj) {

case 1: // There is only a 0 prefix
if (!'base) base = 8;
break;

default: // There is a O0b or a OB prefix
if (!base || base == 2) base = 2;

// If we are looking for another base, the b is the end
else return 0;
break;
}
break;
default:
if (!base) base = 10;
break;
}
i += adj;
}
/+ Test again, maybe the prefix 0 was the only digit. =*/
if (!s[i]) return 0;
/* Now, starts the real conversion =*/
unsigned long ret = Strtoul_ inner (s, i, base);
return (switchsign) ? -ret : ret;

It wraps Strtoul_inner and does the previous adjustments that are needed: it
skips white space, looks for an optional sign, adjusts the base in case the base parameter
was 0, and skips an eventual 0, Ob, or 0x prefix. Observe also that if a minus sign has
been provided, it does the correct negation of the result in terms of unsigned long
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arithmetic.[F* 78] The code that deals with the character for a + or — sign also uses the
attribute [ [fallthrough] ] to indicate that running from the — case into the + case
is intentional so no warning should be given.

To skip the spaces, St rtoul uses strspn, one of the string search functions pro-
vided by <string.h>. This function returns the length of the initial sequence in the <string.h>
first parameter that entirely consists of any character from the second parameter. The
function strespn (“c” for “complement”) works similarly, but it looks for an initial
sequence of characters not present in the second argument.

This header provides a lot more memory and string search functions: memchr,
strchr, strpbrk, strrchr, strstr, and strtok. But to use them, we would
need pointers, so we can’t handle them yet.

8.5.1. Portability of string processing. Unfortunately, the functions that convert strings
to numbers have changed semantics between different versions of the C standard and
are not fully consistent with string literals for these numbers themselves. This also has
an effect on formatted input functions that we will see in 14.2 because they rely on these
string functions.

The first problem is that the functions have changed the format they accept twice,
for C99 and for C23. Take, for example, an innocent looking call:

| double x = strtod("0x1.0P0", nullptr); \

This is supposed to process the string literal up to its end and should return the
value 1.0. But since hexadecimal floating point literals had only been introduced in
C99, libraries from before would stop at the x character and return the value 0.0.

Similarly, introducing a prefix of 0b for integer literals in C23 has the effect that

| |
| wunsigned long res = strtoul ("Obl", nullptr, 2);

results in 0 for C17 and 1 for C28 because for the first, the interpretation stops before
the b. This semantic change concerns strtol and similar functions for base 0 and 2.

Takeaway 8.5.1 #1  Don’t use the string conversion functions to determine the boundaries
of numbers.

Second, the new digit separator ’ that was introduced in C23 has no portable cor-
respondence in the string processing functions. Here is an artificial example that shows
the problem:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define STRINGIFY_ (X) #X
#define STRINGIFY (X) STRINGIFY_ (X)

char const elements[] = STRINGIFY (ULLONG_ MAX) ;

int main(int argc, charx argv[argc+l]) {
char constx p = (argc > 1) ? argv[l] : elements;
if (strtoull(p, nullptr, 0) <= 65535) {
printf ("unusual _platform_with_%s_max\n", p);

Here, the initializer of elements (using ULLONG_MAX) would typically expand
to a string such as

ﬂ357mlmpknumtaﬁnwﬁonfind_prefixasncukdbyStrtouL
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"18446744073709551615"

which then would be correctly recognized as numbers and then skip the call to print£.
In C23, if the implementation chooses to change that to use digit separators (for
example, to improve readability) the expansion now might look like

"Oxffff  £EFE £EEE £EEELL"
"1874467 7440737709551 615"

So, the call to strtoull would only see the leading Oxfff £ or 18 and run into the
branch with the call to print£.

Takeaway 8.5.1 #2  Don’t use the string conversion functions to scan numbers that originate
Jfrom number literals.

8.6. Time. The first class of “times” can be classified as calendar times, times with
a granularity and range that would typically appear in a human calendar for appoint-
ments, birthdays, and so on. The following are some of the functional interfaces that
deal with times and that are all provided by the <t ime .h> header:

time_t time (time_t «t);
double difftime (time_t timel, time_t timeO);
time_t mktime (struct tm tm[1l]);
size_t strftime (char s[static 1], size_t max,
char const format [static 1],
struct tm const tm[static 1]);
int timespec_get (struct timespec ts[static 1], int base);
int timespec_getres (struct timespec ts[static 1], int base);

The first simply provides us with a timestamp of type time_t of the current time.
The simplest form uses the return value of time (0) . As we have seen, two such times
taken from different moments during program execution can then be used to express a
time difference by means of difftime.

Let’s see what all this is doing from the human perspective. As we know, struct
tm structures a calendar time mainly as you would expect. It has hierarchical date
members such as tm_year for the year, tm_mon for the month, and so on, down to
the granularity of a second. It has one pitfall, though: how the members are counted.
All but one start with 0: for example, tm_mon set to 0 stands for January, and tm_wday
0 stands for Sunday.

Unfortunately, there are exceptions:

e tm_mday starts counting days in the month at 1.

e tm_year must add 1900 to get the year in the Gregorian calendar. Years
represented that way should be between Gregorian years 0 and 9999.

e tm_sec is in the range from 0 to 60, inclusive. The latter is for the rare
occasion of leap seconds.

Three supplemental date members are used to supply additional information to a time
value in a struct tm:

e tm_wday for the weekday.

e tm_yday for the day in the year.

e tm_isdst is a flag that informs us whether a date is considered to be in
daylight savings time for the local time zone.

The consistency of all these members can be enforced with the function mktime. It
operates in three steps:
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(1) The hierarchical date members are normalized to their respective ranges.

(2) tm_wday and tm_yday are set to the corresponding values.

(8) If tm_1isday has a negative value, this value is modified to 1 if the date falls
into DST for the local platform or to 0 otherwise.

mktime also serves an extra purpose. It returns the time as a time_t. time_t rep-
resents the same calendar times as struct tm but is defined to be an arithmetic type
more suited to compute with such types. It operates on a linear time scale. A time_t
value of 0 at the beginning of time_t is called the epoch® in C jargon. Often this
corresponds to the beginning of January 1, 1970.

The granularity of time_t is usually to the second, but nothing guarantees that.
Sometimes processor hardware has special registers for clocks that obey a different
granularity. difftime translates the difference between two time_t values into sec-
onds that are represented as a double value.

Other traditional functions that manipulate time in C are a bit dangerous because
they operate on global state:

[ [deprecated]] char xasctime (const struct tm xtimeptr);
[ [deprecated]] char xctime (const time_t xtimer);

struct tm xgmtime (const time t xtimer);

struct tm *xlocaltime (const time_t *timer);

We will not discuss them further because safer variants of these interfaces have

been added to C23:

time_t timegm(struct tm *xtimeptr);
struct tm xgmtime r (const time t xtimer, struct tm xbuf);
struct tm *xlocaltime_ r (const time t xtimer, struct tm =*buf);

Figure 8.1 shows how these functions interact.

asctime
strftime

struct timespec:

difftime

time
struct tm{ o

gmtime r -~~~ -~~~ - -~~~

localtime_r
Ficure 8.1. Time conversion functions

Two functions for the inverse operation from time_t into struct tm come into
view:
e localtime_r stores the broken-down local time.
e gmtime_r stores the broken-down time, expressed as universal time, UTC.

As indicated, they differ in the time zone they assume for the conversion. Under normal
circumstances, localtime_r/mktime, and gmtime_r/timegm should be inverse
to each other, respectively.

Textual representations of calendar times are also available. Indicated by the at-
tribute [ [deprecated]], asctime is deprecated and should not be used in new
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code. It stores the date in a fixed format, independent of any locale, language (it uses
English abbreviations), or platform dependency. The format is a string of the form
"Www,_Mmm_DD,_ HH:MM:SS_YYYY\n"

The reason why this function has been deprecated is that it uses a static buffer to return
the result. So subsequent or parallel invocations of the function erase the stored content
of the string.

strftime is more flexible and allows us to compose a textual representation with
format specifiers. This should be the interface of choice whenever you want a textual
presentation of time.

Table 8.16: strftime format specifiers. Those selected in the Lo-
cale column may differ dynamically according to locale runtime set-
tings; see subsection 8.7. Those selected in the ISO 8601 column are
specified by that standard.

Spec | Meaning Locale | ISO 8601

"$s" | Second ("00" to "60")

"sM" | Minute ("00" to "59")

"SH" | Hour ("00" to "23™).

"$I" | Hour ("01" to "12™").

"%e" | Day of the month (" _1" to "31")

"%d" | Day of the month ("01" to "31")

"™ | Month ("01" to "12")

"$B" | Full month name v

"sb" | Abbreviated month name v

"sh" | Equivalent to "$b" v

"$yY" | Year

"sy" | Year ("00" to "99")

"sC" | Century number (year/100)

"3G" | Week-based year; the same as "$Y", except if the ISO Ve
week number belongs another year

"sg" | Like "$G", ("00" to "99") v

"su" | Weekday ("1" to "7"), Monday being "1"

"sw" | Weekday ("0" to "6", Sunday being "0"

"$A" | Full weekday name v

"$a" | Abbreviated weekday name v

"%9" | Day of the year ("001" to "366")

"sU" | Week number in the year ("00" to "53"), starting at
Sunday

"sW" | Week number in the year ("00" to "53"), starting at
Monday

"sv" | Week numberin the year ("01" to "53"), starting with v
first four days in the new year

"%z" | Timezone name v

"%z" | "+hhmm" or "-hhmm", the hour and minute offset
from UTC

"sn" | Newline

"3t " | Horizontal tabulator

"™ | Literal "$"

"$x" | Date v

"sD" | Equivalent to "$m/%d/%y"

"$F" | Equivalent to "$Y-%m-%d" v




8. C LIBRARY FUNCTIONS 133

Table 8.16: strftime format specifiers, continued.

Spec | Meaning Locale | ISO 8601
"$x" | Time v

"sp" | Either "AM" or "PM": noon is "PM", midnightis "AM" | v

"sr" | Equivalent to "$T1:%M:%S_%p" v

"$R" | Equivalent to "$H: %M"

"$T" | Equivalent to "$H:%M:%S" v

"sc" | Preferred date and time representation v

It works similarly to the print £ family but has special %-codes for dates and times;
see table 8.16. Here, the Locale column indicates that different environment settings,
such as preferred language or time zone, may influence the output. How to access
and eventually set these will be explained in subsection 8.7. strftime receives three
arrays: a char [max] array that is to be filled with the result string, another string that
holds the format, and a struct tm const [1] that holds the time to be represented.
The reason for passing in an array for the time will only become apparent when we
know more about pointers.

The opaque type time_t (and as a consequence t ime itsell) only has a granularity
of seconds.

If we need more precision than that, st ruct timespec and the timespec_get
function can be used. With that, we have an additional member tv_nsec that provides
nanosecond precision. The second argument, base, has only one value that is required
by the C standard: TIME_UTC. You should expect a call to timespec_get with that
value to be consistent with calls to t ime; the resolution of that clock can be queried with
timespec_getres (since C23). They both refer to Earth’s reference time. Other
clocks can be relative to the planetary or other physical system your computer system
is involved with.7_4 In particular, there is an additional interface that is provided by the
C standard library and that collects the processing time that is attributed to the current
execution:

[
\ clock_t clock (void) ;
!

For historical reasons, this introduces yet another type, clock_t. It is an arithmetic
type that gives the processor time in CLOCKS_PER_SEC units per second.

Having three different interfaces, t ime, t imespec_get, and clock, is a bit un-
fortunate. To deal with that situation a more easily, C23 adds optional macros:

e TIME_ACTIVE for a time base that is sought to be compatible with clock

e TIME_THREAD_ACTIVE, which measures processing times restricted to the
current thread

e TIME MONOTONIC for a time base that is independent of time adjustments

Specific platforms may provide even other macros (starting with TIME_ ) for other time
bases.

74Be aware that objects that move fast relative to Earth, such as satellites and spacecraft, may perceive
relativistic time shifts compared to UTC.
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CHALLENGE 10 (Performance comparison of sorting algorithms). Can you compare the
time efficiency of your sorting programs (challenge 1) with data sizes of several orders of magni-
tude?

Be careful to check that you have some randomness in the creation of the data and that the data
size does not exceed the available memory of your computer.

For both algorithms, you should roughly observe a behavior that is proportional to N log N,
where N is the number of elements that are sorted.

8.7. Runtime environment settings. A C program can access an environment
List®, which is a list of name-value pairs of strings (often called environment variables)
that can transmit specific information from the runtime environment. There is a his-
torical function getenv to access this list:

[
\char* getenv (char const name[static 1]);
!

Given our current knowledge, with this function, we are only able to test whether a
name is present in the environment list:

bool havenv (char const name[static 1]) {
return getenv (name) ;

Instead, we use the secured function getenv_s:

errno_t getenv_s(size_t * restrict len,
char value[restrict],
rsize t maxsize,
char const name[restrict]);

This function copies the value that corresponds to name (if any) from the envi-
ronment into value, a char [maxsize], provided that it fits. Printing such a value
can look as this:

void printenv (char const name[static 1]) {
if (getenv (name)) {
char value[256] = { };
if (getenv_s (nullptr, value, sizeof value, name)) {
fprintf (stderr,
"$s: _value_is_longer than_%zu\n",
name, sizeof value);
} else {
printf ("$s=%s\n", name, value);
}
} else {
fprintf (stderr, "%s_not_in_environment\n", name);

As you can see, after detecting whether the environment variable exists, getenv_s
can safely be called with the first argument set to nullptr. Additionally, it is guar-
anteed that the value target buffer will only be written if the intended result fits in it.
The 1en parameter could be used to detect the real length that is needed, and dynamic
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TaBLe 8.17. Categories for the set locale function

LC_COLLATE  String comparison through strcoll and strxfrm

LC_CTYPE Character classification and handling functions; see subsection 8.5.
LC_MONETARY Monetary formatting information, Localeconv T
LC_NUMERIC  Decimal-point character for formatted I/O, localeconv
LC_TIME strftime; see subsection 8.6

LC_ALL All of the above T

buffer allocation could be used to print out even large values. We will wait until higher
levels to see such usages.

Which environment variables are available to programs depends heavily on the
operating system. Commonly provided environment variables include "HOME" for
the user’s home directory, "PATH" for the collection of standard paths to executables,
and "LANG" or "LC_ALL" for the language setting.

The language or locale® setting is another important part of the execution envi-
ronment that a program execution inherits. At startup, C forces the locale setting to a
normalized value, called the "C" locale. It has basically American English choices for
numbers or times and dates.

The function setlocale from <locale.h> can be used to set or inspect the
current value:

[
\char* setlocale (int category, char const locale[static 1]);
L

In addition to "C", the C standard prescribes the existence of one other valid value
for locale: the empty string "". This can be used to set the effective locale to the
systems default. The category argument can be used to address all or only parts of
the language environment. Table 8.17 gives an overview of the possible values and
the part of the C library they affect. Additional platform-dependent categories may be
available.

8.8. Program termination and assertions. We have looked at the simplest way to
terminate a program: a regular return from main.

Takeaway 8.8 #1  Regular program termination should use a return from main.

Using the function exit from within main is kind of senseless because it can be
done just as easily with a return.

Takeaway 8.8 #2 Use exit from a function that may terminate the regular control flow.

The C library has three other functions that terminate program execution. They
are, in order of severity, as follows:

[ [noreturn]] void quick_exit (int status);
[ [noreturn]] wvoid _Exit (int status);
[ [noreturn]] wvoid abort (void) ;

Now, return from main (or a call to exit) already provides the possibility to
specify whether the program execution is considered to be a success. Use the return
value to specify that; as long as you have no other needs or you don’t fully understand
what these other functions do, don’t use them. Really, don’t.

<locale.h>
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Takeaway 8.8 #3  Don’t use functions other than exit for program termination, unless you
have to inhibit the execution of library cleanups.

Cleanup at program termination is important. The runtime system can flush and
close files that are written or free other resources that the program occupied. This is a
feature and should rarely be circumvented.

There is even a mechanism to install your own handlersC that are to be executed
at program termination. Two functions can be used for that:

int atexit (void func (void)) ;
int at_quick_exit (void func (void));

These have a syntax we have not yet seen: function parametersC. For example,
the first reads “function atexit that returns an int and that receives a function func
as a parameter.”””

We will not_go into detail here. An example will show how this can be used:

void sayGoodBye (void) {
if (errno) perror ("terminating _with_error_ condition");
fputs ("Good,_Bye\n", stderr);

}

int main (int argc, charx argv[argc+l]) {
atexit (sayGoodBye) ;

}

This uses the function atexit to establish the exit-handler sayGoodBye. After
normal termination of the program code, this function will be executed and give the
status of the execution. This might be a nice way to impress your co-workers if you
are in need of some respect. More seriously, this is the ideal place to put all kinds of
cleanup code, such as freeing memory or writing a termination timestamp to a log file.
Observe that the syntax for calling is atexit (sayGoodBye). There are no () for
sayGoodBye itself: here, sayGoodBye is not called at that point; only a reference to
the function is passed to atexit.

Under rare circumstances, you might want to circumvent these established atexit
handlers. There is a second pair of functions, quick_exit and at_quick_exit,
that can be used to establish an alternative list of termination handlers. Such an alter-
native list may be useful if the normal execution of the handlers is too time consuming
or you need to use quick_exit to terminate execution from a signal handler; we will
see that in section 19.6. Use with care.

The next function, _Exit, is even more severe: it inhibits both types of application-
specific handlers to be executed. The only things that are executed are the platform-
specific cleanups, such as file closure. Use this with even more care.

The last function, abort, is even more intrusive. Not only doesn’t it call the ap-
plication handlers, but it also inhibits the execution of some system cleanups. Use this
with extreme care.

At the beginning of this section, we looked at static_assert, which should be
used to make compile-time assertions. They can test for any form of compile-time
Boolean expression. Two other identifiers come from <assert.h> and can be used
for runtime assertions: assert and NDEBUG. The first can be used to test for an ex-
pression that must hold at a certain moment. It may contain any Boolean expression,
and it may be dynamic. If the NDEBUG macro is not defined during compilation, every

7y fact, in C, such a notion of a function parameter func to a function atexit is equivalent to passing
a function pointer®. In descriptions of such functions, you will usually see the pointer variant. For us, this
distinction is not yet relevant; it is simpler to think of a function being passed by reference.



8. C LIBRARY FUNCTIONS 187

time execution passes by the call to this macro, the expression is evaluated. The func-
tions gcd and ged2 from subsection 7.3 show typical use cases of assert: a condition
that is supposed to hold in every execution.

If the condition doesn’t hold, a diagnostic message is printed, and abort is called.
So, none of this should make it through into a production executable. From the earlier
discussion, we know that the use of abort is harmful, in general, and also an error
message such as

Terminal

assertion failed in file euclid.h, function gcd2(), line 6

is not very helpful for your customers. It is helpful during the debugging phase, where
it can lead you to spots where you make false assumptions about the values of variables.

Takeaway 8.8 #4  Use as many asserts as you can to confirm runtime properties.

As mentioned, NDEBUG inhibits the evaluation of the expression and the call to
abort. NDEBUG would typically only be set for the whole compilation of a program
or library that is considered to be ready for production because, if set, assert would
not trigger if an erroneous value occurs. Because it is set for the whole compilation
of a project, it would usually be set from the compiler command line and not with a
#define directive.

Takeaway 8.8 #5 In production compilations, use NDEBUG to swilch off all asserts.

CHALLENGE 11 (Image segmentation). In addition to the C standard library, there are many
other support libraries out there that provide very different features. Among those are a lot that do
image processing of some kind. Try to find a suitable such image-processing library that is written
in or interfaced to C and allows you to treat grayscale images as two-dimensional matrices of base
lype unsigned char.

The goal of this challenge is to perform a segmentation of such an image: to group the pixels
(the unsigned char elements of the matrix) into connected regions that are “similar” in some
sense or another. Such a segmentation forms a partition of the set of pizxels, much as we saw in
challenge 4. Therefore, you should use a Union-Iind structure to represent regions, one per pixel
at the start.

Can you implement a statistics function that computes a statistic for all regions? This should be
another array (the third array in the game) that for each root holds the number of pixels and the
sum of all values.

Can you implement a merge criterion for regions? Test whether the mean values of two regions
are not too far apart: say, no more than five gray values.

Can you implement a line-by-line merge strategy that, for each pizxel on a line of the image, tests
whether its region should be merged to the left and/or to the top?

Can you iterate line by line until there are no more changes, such that the resulting regions/sets
all test negatively with their respective neighboring regions?

Now that you have a complete function for image segmentation, try it on images with assorted
subjects and sizes. Vary your merge criterion with different values for the the mean distance

instead of five.
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Summary

e The C library is interfaced via a bunch of header files.
e Mathematical functions are best used via the type-generic macros from tgmath.
e Input and output (IO) are interfaced via stdio.h. There are functions that

do 10O as text or as raw bytes. Text IO can be direct or structured by formats.
String processing uses functions from ctype.h for character classification,
from stdlib for numerical conversion, and from st ring. h for string ma-
nipulation.

Time handling in t ime . h has calendar time that is structured for human in-
terpretation and physical time that is structured in seconds and nanoseconds.
Standard C only has rudimentary interfaces to describe the execution en-
vironment of a running program; getenv provides access to environment
variables, and 1ocale.h regulates the interface for human languages.
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The Eurasian jay may be solitary or found in pairs. It is known for its
mimicry of other bird calls, for its alertness, and for its dispersal of seeds
that contribute to forest expansion.

Now we are advanced enough to go to the heart of C. Completing this level should
enable you to write C code professionally; it therefore begins with an essential discus-
sion about the writing and organization of C programs (sections 9 and 10). Then it
fills in the gaps for the major C constructs that we have skipped so far: it fully explains
pointers (section 11), familiarizes you with C’s memory model (section 12) and dy-
namic storage allocation (section 13), and allows you to understand most of C’s library
interface (section 14). We finish with a more systematic discussion of all the possible
failures of C programs (section 15).
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9. Style

This section covers
e Writing readable code
e Formatting code
e Naming identifiers

Programs serve a dual-purpose. First, as we have already seen, they serve to give
instructions to the compiler and the final executable. But equally important, they doc-
ument the intended behavior of a system for the people (users, customers, maintainers,
lawyers, and so on) who have to deal with it. Therefore, we have a prime directive.

Takeaway 9 #1 Al C code must be readable.

The difficulty with that directive is knowing what constitutes “readable.” Not all
experienced C programmers agree, so we will begin by trying to establish a minimal
list of necessities. The first thing we must have in mind when discussing the human
condition is that it is constrained by two major factors: physical ability and cultural
baggage.

Takeaway 9 #2  Short-term memory and the field of vision are small.

Torvalds et al. [1996], the coding style for the Linux kernel, is a good example that

insists on that aspect and certainly is worth a detour if you haven’t read it yet. Its main
assumptions are still valid: a programming text has to be represented in a relatively
small “window” (be it a console or a graphical editor) that consists of roughly 80 lines
of 80 columns, making a “surface” of 2,400 characters. Everything that doesn’t fit has
to be memorized. For example, our very first program in listing 1.1 fits into these
constraints.

By its humorous reference to Kernighan and Ritchie [1978], the Linux coding style
also refers to another fundamental fact.

Takeaway 9 #3  Coding style is not a question of taste but of culture.
Ignoring this easily leads to endless and fruitless debates about not much at all.
Takeaway 9 #4  Each established project constitutes its own cultural space.

Try to adapt to the habits of the inhabitants. When you create your own project,
you have a bit of freedom to establish your own rules. But be careful if you want others
to adhere to them; you must not deviate too much from the common sense that reigns
in the corresponding community.

9.1. Formatting. The C language itself is relatively tolerant of formatting issues.
Under normal circumstances, a C compiler will dumbly parse an entire program that is
written on a single line with minimal white space and where all identifiers are composed
of the letter 1 and the digit 1. The need for code formatting originates in human
incapacity.

Takeaway 9.1 #1  Choose a consistent strategy for white space and other text formaiting.

Formatting concerns indentation, placement of parentheses and all kinds of brack-
ets ({}, [1, and ()), spaces before and after operators, trailing spaces, and multiple
new lines. The human eye and brain are quite peculiar in their habits, and to ensure
that they work properly and efliciently, everything must be in sync.

In the introduction for level 1, you saw a lot of the coding style rules applied to the
code in this book. Take them as an example of one style; you will most likely encounter
other styles as you go along. Let us recall some of the rules and introduce some others
that have not yet been presented:
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e We use prefix notation for code blocks: that is, an opening { is at the end of
a line.

e We bind type modifiers and qualifiers to the left.

e We bind function () to the left, but () of conditions are separated from their
keyword (such as if or for) with a space.

e A ternary expression has spaces around the ? and the :.

e Punctuation marks (:, ;, and ,) have no space before them but either one
space or a new line after.

As you see, when written out, these rules can appear quite cumbersome and arbitrary.
They have no value as such; they are visual aids that help you and your collaborators
understand new code in the blink of an eye. They are not meant to be meticulously
typed by you directly, but you should acquire and learn the tools that can help you with
them.

Takeaway 9.1 #2  Have your text editor automatically format your code correctly.

I personally use Emacs (https://www.gnu.org/software/emacs/) for that task (yes, I
am that old). For me, it is ideal since it understands a lot of the structure of a C program
by itself. Your mileage will probably vary, but don’t use a tool in everyday life that
gives you less. Text editors, integrated development environments (IDEs), and code
generators are there for us, not the other way around.

In bigger projects, you should enforce such a formatting policy for all the code
that circulates and is read by others. Otherwise, it will become difficult to track differ-
ences between versions of programming text. This can be automated by command-line
tools that do the formatting. Here, I have a long-time preference for astyle (artis-
tic style http://sourceforge.net/projects/astyle/). Again, your mileage
may vary; please choose any tool that ensures the task for you.

9.2. Naming. The limit of such automatic formatting tools is reached when it
comes to naming.

Takeaway 9.2 #1  Choose a consistent naming policy for all identifiers.

There are two different aspects to naming: technical restrictions on one hand and
semantic conventions on the other. Unfortunately, they are often mixed up and the
subject of endless ideological debate.

For C, various technical restrictions apply; they are meant to help you, so take them
seriously. First, we target all identifiers: types (struct or not), struct and union
members, variables, enumerations, macros, functions, function-like macros. There are
so many tangled name spacesC that you have to be careful.

In particular, the interaction between header files and macro definitions can have
surprising effects. Here is a seemingly innocent example:

|
\double memory_sum(size_t N, size_t I, double strip([N][I]);
L

e N is a capitalized identifier, and thus your collaborator could be tempted to
define a macro N as a big number.

I is used for the root of —1 as soon as someone includes <complex.h>.
The identifier st rip might be used by a C implementation for a library
function or macro.

The identifier memory_ sum might be used by the C standard for a type name
in the future.

Takeaway 9.2 #2  Any identifier that is visible in a header file must be conforming.

<complex.h>


https://www.gnu.org/software/emacs/
http://sourceforge.net/projects/astyle/
http://sourceforge.net/projects/astyle/
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Here, conforming is a wide field. In C jargon, an identifier is reserved® if its meaning
is fixed by the C standard, and you may not redefine it otherwise:

e Names starting with an underscore and a second underscore or a capital letter
are reserved for language extensions and other internal use.

e Names starting with an underscore are reserved for file scope identifiers and
for enum, struct and union tags.

e Macros have all-caps names.

o Allidentifiers that have a predefined meaning are reserved and cannot be used
in file scope. This includes a lot of identifiers, such as all functions in the C
library, all identifiers starting with st r (like our st rip, earlier), all identifiers
starting with E, all identifiers ending in _t, and many more.

What makes all of these rules relatively difficult is that you might not detect any violation
for years, and then, suddenly, on a new client machine, after the introduction of the next
C standard and compiler or after a simple system upgrade, your code explodes.

A simple strategy to keep the probability of naming conflicts low is to expose as few
names as possible.

Takeaway 9.2 #8  Don’t pollute the global space of identifiers.

Expose only types and functions as interfaces that are part of the application pro-
gramming interface® (APIC)— that is, those that are supposed to be used by users of
your code.

A good strategy for a library used by others or in other projects is to use naming
prefixes that are unlikely to create conflicts. For example, many functions and types in
the POSIX thread API are prefixed with pthread_. For my tool box P99, I use the
prefixes p99_ and P99_ for API interfaces and p00_ and P0OO_ for internals.

There are two sorts of names that may interact badly with macros that another
programmer writes and which you might not think of immediately:

e Member names of struct and union
e Parameter names in function interfaces

The first point is the reason why the members in standard structures usually have a
prefix to their names: struct timespec has tv_sec as a member name because an
uneducated user might declare a macro sec that would interfere in an unpredictable

<time.h> way when including <t ime . h>. For the second point, we saw an example earlier. In
P99, I would specify such a function something like this:

|

‘double p99_memory_sum(size_t p00_n, size_t p00_i,

‘ double p00_strip[p00_n] [p00_1i]);
!

This problem gets worse when we are also exposing program internals to the public
view. This happens in two cases:

e So-called inline functions, which are functions whose definition (not only
declaration) is visible in a header file
e Function-like macros

We will discuss these features much later in sections 16.1 and 17.

Now that we have clarified the technical points of naming, we will look at the se-
mantic aspect.

Takeaway 9.2 #4  Names must be recognizable and quickly distinguishable.
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TaBLE 9.1. Some examples of well and badly distinguishable identifiers.

Recognizable | Distinguishable | Quickly
11111111011 11111111011 No No No
myLineNumber | myLimeNumber Yes Yes No
n m Yes Yes Yes
ffs clz No Yes Yes
lowBit highBit Yes Yes Yes
p000rb p00Urb No Yes No
p00_orb p00_urb Yes Yes Yes

That has two parts: distinguishable and quickly. Compare the identifiers in ta-
ble 9.1.

For your personal taste, the answers on the right side of this table may be different.
This reflects my taste: an implicit context for such names is part of my personal expec-
tation. The difference between n and m on one side and for ££s and c1z on the other
is an implicit semantic.

For me, because I have a heavily biased mathematical background, single-letter
variable names from 1 to n, such as n and m, are integer variables. These usually occur
inside a quite restricted scope as loop variables or similar. Having a single-letter identi-
fier is fine (we always have the declaration in view), and they are quickly distinguished.

The function names £fs and clz are different because they compete with all
other three-letter acronyms that could potentially be used for function names. Ac-
cidentally, here, ££s is shorthand for find first (bit) set, but this is not immediately
obvious to me. What it means is even less clear: which bit is first, the most signifi-
cant or the least significant? In C28, which now integrates these functionalities via the
<stdbit .h> header, more significant names have been chosen, stde_bit_width
and stdc_trailing zeros.

There are several conventions that combine multiple words in one identifier. Among

the most commonly used are the following:

C, using internalCapitalsToBreakWords

e Camel case
e Snake casec, using internal_underscores_to_break_words
o Hungarian notation® ,l which encodes type information in the prefix of the

identifiers, such as szName, where sz stands for string and zero terminated

As you might imagine, none of these is ideal. The first two tend to obscure our view:
they easily clog up a whole precious line of programming text with an unreadable ex-
pression:

return theVerySeldomlyUsedConstant+theVerySeldomlyUsedConstant/
number_of_elements;

Hungarian notation, in turn, tends to use obscure abbreviations for types or con-
cepts, produces unpronounceable identifiers, and completely breaks down if you have
an API change.

So, in my opinion, none of these rules or strategies have absolute values. I encour-
age you to take a pragmatic approach to the question.

Takeaway 9.2 #5  Naming is a creative act.

It is not easily subsumed by simple technical rules. Obviously, good naming is
more important the more widely an identifier is used. So, it is particularly important

nvented in Simonyi [1976], the PhD thesis of Simonyi Kdroly.

<stdbit.h>
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for identifiers for which the declaration is generally out of view of the programmer:
global names that constitute the API.

Takeaway 9.2 #6  File scope identifiers must be comprehensive.

What constitutes comprehensive here should be derived from the type of the identi-
fier. Type names, constants, variables, and functions generally serve different purposes,
so different strategies apply.

Takeaway 9.2 #7 A type name identifies a concept.

Examples of such concepts are time for struct timespec, size for size_t, a
collection of corvidae for enum corvid, person for a data structure that collects data
about people, list for a chained list of items, dictionary for a query data structure, and so
on. If you have difficulty coming up with a concept for a data structure, an enumeration,
or an arithmetic type, you should probably revisit your design.

Takeaway 9.2 #8 A global constant identifies an artifact.

That is, a constant stands out for some reason from the other possible constants of
the same type: it has a special meaning. It may have this meaning for some exter-
nal reason beyond our control (M_PT for 7) because the C standard says so (false,
true) because of a restriction of the execution platform (SIZE_MAX), to be factual
(corvid_num), for a reason that is culturally motivated (fortytwo), or as a design
decision.

Generally, we will see shortly that file scope variables (globals) are much frowned
upon. Nevertheless, they are sometimes unavoidable, so we have to have an idea how
to name them.

Takeaway 9.2 #9 A global variable identifies siate.

Typical names for such variables are toto_initialized to encode the fact that
library toto has already been initialized, onError for a file scope but internal variable
that is set in a library that must be torn down, and visited_entries fora hash table
that collects shared data.

Takeaway 9.2 #A A function or functional macro identifies an action.

Not all, but many, of the functions in the C standard library follow that rule and
use verbs as a component of their names. Here are some examples:

A standard function that compares two strings is stremp.

e A standard macro that queries for a property is isless

e A function that accesses a data member could be called toto_getFlag

e The corresponding one that sets such a member would be toto_setFlag
o A function that multiples two matrices is matrixMult

9.3. Internationalization, so to speak. Generally, in the English-speaking world,
the term “internationalization” refers to the ability of a platform or feature to adapt to
other language conventions than English. I put this term into quotes because I think
that it already contains quite an amount of hybris, namely that English would be the
center of the world’s culture and everybody else just spins around it as of secondary
importance.

Then, the term also goes too short because the features to which it usually refers
are not only to different national cultures or languages; they also concern subcultures
(such as adepts of the invented Klingon language) and specific technical requirements
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in specialized contexts, such as mathematical notation, IPA phonetics, and graphical
characters.

So, let’s first come back to using other languages and scripts in coding. Note that
this question is different (and should be dissociated) from the question of whether a
program supports one or multiple languages for its users. In section 8.7 we have already
seen some features that help adapt a program to the environment in which it is executed.

Note that English is definitively of high importance in the computer science indus-
try and often serves as a lingua franca. As a German living in France writing an English
book about C, I am confronted with that every day.z

But outside of my bubble, it may be completely sensible to use different language
conventions for variable and function names and code comments. In particular, pro-
gramming communities in cultures that use scripts that are not based on Latin should
(and do) use other scripts and languages to a large extent. As it had been developed
in English, C has a historical baggage of implicitly forcing that language in coding.
Whenever these things are discussed publicly (for example, on social networks), often
you would hear quite pronounced (perceivably arrogant) opinions on why one would
even think of using another language or, even more qualified, that the person would not
know how to enter a non-English character on their keyboard.

Luckily, affairs have slowly evolved such that communities now have a real choice
about the language features they want to use. Unicode support (see section 14) is usually
good enough, and C has embraced at least some level of language support, even for
the coding itself. Code as in the following should easily be accepted and maintainable
without difficulties:

[
‘long année = 1990L; // Année de 1’écriture de 1’euvre
L

Ifitisn’t, it is not the fault of the person who wrote that code, but it is your environ-
ment, implementation, system, or institution that is to blame. If you are surprised by
such code, you should first question your own compass and your own prejudice before
suggesting a change.

Takeaway 9.3 #1  The natural language of a project should be chosen to accommodate the
majority of the participants.

That is, again, what language to choose depends on a lot of factors. The most
important is that everybody in the project is mostly at ease. In Western societies, that
will often mean that projects use English, but don’t take this as a given just because you
were raised with that assumption.

The other aspect that should be more focused on is the adequate technical language
that is used for domain-specific problems. As an example domain, consider mathemat-
ics. If you look into usual mathematical texts, you will see a lot of different scripts all
mixed together with a lot of conventions about proper names (for example, 7, C, N, Q,
R, and Z), classes of symbols (@, B, and v for angles, ¢, and & for small quantities, N
for infinities) that all contribute so that somebody from the corresponding community,
such a text is readable with the blink of an eye. There should be no restriction to using
such characters and conventions anywhere in the documentation to describe what the
code does. Modern systems have to be able to use these and work with them smoothly.

When it comes to using other scripts and mathematical symbols at the core of
the language (namely, as identifiers), things are much more disputed and have been
much more difficult technically in the past. Previous versions of the C standard already
allowed, in principle, the addition of a large panel of characters, but the specification
for the allowed set of identifiers had been not easy to comprehend, and the platforms

2These are my four main languages. What are yours?
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had not exactly been able to ease their integration into your code. The only portable
way to do so has been with a crude syntax such as here:

|
‘long ann\uO0E%9e = 1990L; // Ann\uOOE9e de 1’\uOOE9criture de 1’\ul0l53uvre ‘
!

el

Here, the aberrations of \uOOE9 and \u0153 stand for the characters “¢” and
“ce,” respectively. Having to encode them in that way somehow defeats the purpose,
and this has only a clear application as an intermediate format. Tooling was needed
to transform your native encoding before feeding it into the compiler, and not very
surprisingly, nobody used this kind of feature.

With C23, the tide may have turned. Language support is now more straightly
referring to Unicode, and the rules for allowed identifiers are now clear and refer to a
substandard of Unicode, namely UAX #31 ("Unicode Identifier and Pattern Syntax").
The problem that part of Unicode addresses is the fact that many characters in non-

el

English languages are composed of different components. For example, the “¢” that
we used previously is obtained from a plain Latin “e” with code \u0065) and an acute

accent “” with code \u0301. So, in general, there are several inputs (here, \uOOE9
and \u0065\u0301) that, depending on the context, are perceived as representing
the same character.

The method from UAX #31 chosen for the C programming language to deal with
kind of ambiguity is called Normalization Form C® To know to which unique character
sequence a given string (or, here, identifier) maps, it is first decomposed into all the base

29

characters, accents, and so on, and then it is recomposed. For our example of “é” or

something like the Hangul Syllable Gag “Z” (\uAC01), this is not very interesting. The

resulting character of this procedure is the one with which we started:

\uO0E9 — \u0065\u0301 — \uOO0E9
\UuAC01l — \ull00\ull61\ullA8 — \uACO01l

It becomes more interesting when several characters have the same decomposition,
namely “A” (Latin Capital Letter A with Ring Above) and “A” (Angstrom sign):*

\u00C5 — \u0041\u030A — \u00C5
\u21B2 — \u0041\u030A — \u00C5

Here, the code point \u21B2 is seen as having the same decomposition as the
direct alphabetic composition and the Form C projects it to that code point \u00C5.

Another ambiguity occurs for signs that are themselves considered letters but based
on Greek letters, such as the Ohm signi (\u2126), which stems from Greek capital letter
Omega “Q” (\u03A9):

\u03A9 — \u03A9 — \u03A9
\u2126 — \u03A9 — \u03A9

On the other hand, technical symbols identified as alphabetic letters but with a
glyph that is clearly distinct from all other alphabetic letters such as “R” and “3” (for
real and imaginary parts of a complex number) map to themselves.

Takeaway 9.3 #2  Alphabetic letters are only allowed in identifiers if they map to themselves
Jfor Normalization Form C.

Such a rule is perhaps not explicit enough, so let’s reformulate it.

3Choosing the same name “C” for the language and the Normalization Form is just a coincidence.
4A metric unit named after the Swedish physicist Anders Jonas Angstrom (1814-1874).
5The unit for electrical resistance is named after the German physicist Georg Simon Ohm (1789-1854).
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Takeaway 9.3 #3  Only use alphabetic letters in identifiers if they originate directly from
natural languages or they are clearly distinctive from all natural languages.

But be aware that Normalization Form C does not solve all the possible problems.
In particular, glyphs from different languages might be indistinguishable, such as a Greek
capital letter Alpha and Latin capital letter A, which have the same glyph “A.”

In other positions than the first, identifiers may also contain numbers. You may
use the wide spectrum of Unicode’s Decimal Digit category, but be careful because these
may also have glyphs that are not easily distinguishable. For example, a name a0 (using
mathematical bold digit zero, 0) may look very simlar to a0 (using a usual digit zero 0
character).

Takeaway 9.3 #4  Only use letiers from different scripts or variations of decimal digits in
identifiers if they are clearly distinctive from one another.

One feature that is still missed by the rules that C23 introduced is subscript and
superscript numbers. For my taste, it would be nice if we could distinguish variable
names, such as, for example, a; and ag. The compilers on my platform already allow
this as an extension, but this might not (yet) be fully portable:

Takeaway 9.3 #5  Using subscript or superscript letters in identifiers is not portable.
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Summary

e Coding style is a matter of culture. Be tolerant and patient.
e The choice of a project’s natural language is important and should be con-

sensual.

Code formatting is a matter of visual habits. It should be automatically pro-
vided by your environment so you and your co-workers can read and write
code effortlessly.

Naming variables, functions, and types is an art and plays a central role in the
comprehensiveness of your code.

Identifiers used for names may be written with non-Latin characters to ex-
press ideas in the project’s natural language or in the accepted terminology of
the specific domain.
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10. Organization and documentation

This section covers

e How to document interfaces
e How to explain implementations

Being an important societal, cultural, and economic activity, programming needs a cer-
tain form of organization to be successful. As with coding style, beginners tend to un-
derestimate the effort that should be put into code and project organization and doc-
umentation. Unfortunately, many of us have to go through the experience of reading
our own code sometime after we have written it and not having any clue what it was all
about.

Documenting or, more generally, explaining program code is not an easy task. We
have to find the right balance between providing context and necessary information and
boringly stating the obvious. Let’s have a look at the two following lines:

u = fundyou(u, i, 33, 28); // ;)
ARl // incrementing i

The first line isn’t good because it uses magic constants, a function name that doesn’t
tell what is going on, and a variable name that does not have much meaning, at least
to me. The smiley comment indicates that the programmer had fun when writing this,
but it is not very helpful to the casual reader or maintainer.

In the second line, the comment is superfluous and states what any even not-so-
experienced programmer knows about the ++ operator.

Compare that to the following:

/+ 33 and 28 are suitable because they are coprime. x/

u = nextApprox(u, i, 33, 28);

/+ Theorem 3 ensures that we may move to the next step. */
il g

Here, we may deduce a lot more. I'd expect u to be a floating-point value, proba-
bly double—that is, subject to an approximation procedure. That procedure runs in
steps, indexed by 1, and needs some additional arguments that are subject to a primality
condition.

Generally, we have the what, what for, how, and in which manner rules, in order of
their importance:

Takeaway 10 #1 (what)  Function interfaces describe what is done.
Takeaway 10 #2 (what for) Interface comments document the purpose of a function.
Takeaway 10 #3 (how) Function code shows how the function is organized.

Takeaway 10 #4 (in which manner) Code comments explain the manner in which func-
tion details are implemented.

In fact, if you think of a larger library project used by others, you'd expect that all
users will read the interface specification (such as in the synopsis part of a man page),
and most of them will read the explanation about these interfaces (the rest of the man
page). Considerably fewer users will look at the source code and read about how or in
which manner a particular interface implementation does things the way it does.

Afirst consequence of these rules is that code structure and documentation go hand
in hand. The distinction between interface specification and implementation is espe-
cially important.
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Takeaway 10 #5  Separate interface and implementation.

This rule is reflected in the use of two different kinds of C source files: header files®,
usually ending with " . h", and translation units© (TU), ending with " . c".

Syntactical comments have two distinct roles in those two kinds of source files that
should be separated:

Takeaway 10 #6  Document the interface; explain the implementation.

10.1. Interface documentation. In contrast to more recent languages such as Java
and Perl, C has no “built-in” documentation standard. But in recent years, a cross-
platform public domain tool has been widely adopted in many projects: doxygen (https:
//www.doxygen.nl/). It can be used to automatically produce web pages, PDF
manuals, dependency graphs, and a lot more. But even if you don’t use doxygen or
another equivalent tool, you should use its syntax to document interfaces.

Takeaway 10.1 #1  Document interfaces thoroughly.

Doxygen has a lot of categories that help with that, but an extended discussion goes
far beyond the scope of this book. Just consider the following example:

heron k.h

/[ x
** @brief use the Heron process to approximate @a a to the
x%x power of “1/k’
* x

** Or 1n other words this computes the @fS$k"{th}@f$ root of @a a

*%x As a special feature, if @a k is -1 it computes the
*x multiplicative inverse of (@a a.
* %
*% (@param a must be greater than 0.0
** @param k should not be "0° and otherwise be between
*x ~DBL_MIN_EXP*FLT RDXRDX  and
x+ "DBL_MAX EXP+FLT_ RDXRDX .
* %
** (@see FLT_RDXRDX
*x/
double heron (double a, signed k) [[__unsequenced_ ]];

Doxygen produces online documentation for that function that looks similar to
figure 10.1 and is also able to produce formatted text that we can include in this book:


https://www.doxygen.nl/
https://www.doxygen.nl/
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heron_k.h
heron:
use the Heron process to approximate a to the power of 1/k

Or in other words this computes the £ root of a. As a special feature, if kis —1 it
computes the multiplicative inverse of a.

Parameters:

a | must be greater than 0.0

k|should not be 0 and otherwise be be-
tween DBL_MIN_EXP*FLT_RDXRDX and
DBL_MAX EXP+FLT_ RDXRDX.

See also: FLT RDXRDX

double heron (double a, signed k) [[__unsequenced ]];

heron_k.h

FLT_RDXRDX:

the radix base 2 of FLT_RADIX

This is needed internally for some of the code below.

# define FLT_RDXRDX something

As you have probably guessed, words starting with @ have a special meaning for
doxygen: they start keywords. Here we have @param, @a, and @brief. The first
documents a function parameter, the second refers to such a parameter in the rest of
the documentation, and the last provides a brief synopsis of the function.

Additionally, we see that there is some markup capacity inside comments and that
doxygen was able to identify the place in translation unit "heron_k . c" that defines the
function and the call graph of the different functions involved in the implementation.

To provide good project organization, it is important that users of your code be
able to easily find connected pieces and not have to search all over the place.

Takeaway 10.1 #2  Structure your code in units that have strong semantic connections.

Most often, this is simply done by grouping all functions that treat a specific data
type in one header file. A typical header file "brian.h" for struct brian would
be like this:

#ifndef BRIAN_H
#define BRIAN_H 1
#include <time.h>

/xx @file
x* Q@Qbrief Following Brian the Jay
*x/

typedef struct brian brian;
enum chap { sct, en, };

typedef enum chap chap;

struct brian {
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double heron [ double a,
signed k
|
use the Heron process to approximate ato the power of 1/k

Or in ather words this computes the kth root of a. As a special feature, if kis -1 it computes the mukiplicative inverse of a.

Parameters
a must be greater than 0. 0
k should net be O and otherwise be between DBL_MIN EXP*FLT_RDXRDX and DEL_MAX_ EXP+FLT_RDXRDX.

Definition at line 194 of file heron_k.c.
References expk(), heron(), and heronl{).
Referenced by heron(), and main().

Here is the call graph for this function:
vy Lo [}
heron \

heron1 |—.| heron1_astimate_chr

heron1_estimate_cir_05

heroni_estimate_dir_10

Here is the caller graph for this function:

Ficure 10.1. Documentation produced by doxygen

struct timespec ts; /**< point in time */
unsigned counter; /x+%< wealth */
chap masterof; /**< occupation */

}i

/ *x
*% @brief get the data for the next point in time
*x/

brian brian_next (brian) ;

#endif

That file comprises all the interfaces that are necessary to use the struct. It also
includes other header files that might be needed to compile these interfaces and protect
against multiple inclusions with include guards® (here, the macro BRIAN_H).

10.2. Implementation. If you read code that is written by good programmers
(and you should do that often!), you'll notice that it is often scarcely commented. Nev-
ertheless, it may be quite readable, provided the reader has basic knowledge of the C
language. Good programming only needs to explain the ideas and prerequisites that
are not obvious (the difficult part). The structure of the code shows what it does and
how.

Takeaway 10.2 #1  Implement literally.

A C program is a descriptive text about what is to be done. The rules for naming
entities that we introduced earlier play a crucial role in making that descriptive text
readable and clear. Another requirement is to have an obvious flow of control through
visually clearly distinctive structuring in compound statements (grouping with { }) that
are linked together with comprehensive control statements.
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Takeaway 10.2 #2  Control flow must be obvious.

There are many possible ways to obfuscate control flow. The most important are
as follows:

Buried jumps: break, continue, return, and goto® statements that are buried
in a complicated nested structure of 1 £ or switch statements, eventually
combined with loop structures.

Flyspeck expressions: Controlling expressions that combine a lot of operators in an

unusual way (for example, ! | +++*p——or a ——> 0) such that they must be
examined with a magnifying glass to understand where the control flow goes
from here.

In the following subsections, we will focus on several concepts that can be crucial
for the readability and performance of C code:

e A macro can be a convenient tool to abbreviate a certain feature but, if used
carelessly, may also obfuscate code that uses it and trigger subtle bugs (sub-
section 10.2.1).

e As we saw previously, functions are the primary choice in C for modular-
ization. Here, a particular property of some functions is especially impor-
tant; a function that is pure only interacts with the rest of the program via
its interface. Therefore, pure functions are easily understandable by humans
and compilers and generally lead to quite efficient implementations (subsec-
tion 10.2.2).

e We already have seen that attributes can be used to attach more information
to our code. Section 10.2.8 discusses them in more detail.

10.2.1. Macros. We already know one tool that can be abused to obfuscate control
flow: macros. As you hopefully remember from subsections 5.6.3 and 8.1.2, macros
define textual replacements that can contain almost any C text. Because of the prob-
lems we will illustrate here, many projects ban macros completely. This is not the
direction the evolution of the C standard goes, though. As we have seen, for exam-

ple, type-generic macros are the modern interface to numerical functions (see 8.3).
Macros should be used for initialization constants (5.6.3) or to implement compiler
magic (errno; section 8.1.3).

So, instead of denying it, we should try to tame the beast and set up some simple
rules that confine the possible damage.

Takeaway 10.2.1 #1  Macros should not change the control flow in a surprising way.

Notorious examples that pop up in discussions with beginners from time to time
are things like these:

#define begin {

#define end }

#define forever for (;;)

#define ERRORCHECK (CODE) if (CODE) return -1

forever
begin
// do something
ERRORCHECK (x) ;
end

6These will be discussed in subsections 18.2.2 and 15.6.
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Don’t do that. The visual habits of C programmers and our tools don’t easily work with
something like that, and if you use such things in complicated code, they will almost
certainly go wrong.

Here, the ERRORCHECK macro is particularly dangerous. Its name doesn’t suggest
that a nonlocal jump such as a return might be hidden in there. And its implemen-
tation is even more dangerous. Consider the following two lines:

if (a) ERRORCHECK (x) ;
else puts("a is 0!");

These lines are rewritten as

if (a) if (x) return -1;
else puts("a_is 0!");

The else clause (a so-called dangling else®) is attached to the innermost i £, which
we don’t see. So, this is equivalent to

if (a) {
if (x) return -1;
else puts("a_is 0!");

}

which is probably quite surprising to the casual reader.

This doesn’t mean control structures shouldn’t be used in macros at all. They just
should not be hidden and should have no surprising effects. This macro by itself is
probably not as obvious, but its use has no surprises:

#define ERROR_RETURN (CODE) \
do { \

if (CODE) return -1; \
} while (false)

The name of the following macro makes it explicit that there might be a return.
The dangling else problem is handled by the replaced text:

if (a) ERROR_RETURN (x) ;
else puts("a_is 0!");

In contrast to all of the previous dangling else, the next example structures the
code as expected, with the else associated with the first 1 £:

if (a) do {

if (CODE) return -1;
} while (false);
else puts("a_is 0!");

The do-while (false) -trick is obviously ugly, and you shouldn’t abuse it. But it
is a standard trick to surround one or several statements with a { } compound statement
without changing the program structure that is visible to the naked eye and without
incurring the dangling else and similar problems.

Takeaway 10.2.1 #2  Function-like macros should syntactically behave like function calls.
Possible pitfalls are

if without else: Already demonstrated.
Trailing semicolons: These can terminate an external control structure in a surprising
way.
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Comma operators: The comma is an ambiguous character in C. In most contexts, it is
used as a list separator, such as for function calls, enumerator declarations, or
initializers. In the context of expressions, it is a control operator. Avoid it.

Continuable expressions: Expressions that will bind to operators in an unexpected way
when put into a nontrivial context.@ In the replacement text, put paren-
theses around parameters and expressions.

Multiple evaluation: Macros are textual replacements. If a macro parameter is used
twice (or more), its effects are done twice.l* 8

10.2.2. Pure functions. Functions in C such as size_min (subsection 4.5) and
gcd (subsection 7.8) that we declared ourselves are limited in terms of what we can ex-
press; they don’t operate on objects but rather on values. In a sense, they are extensions
of the value operators in table 4.1 and not of the object operators in table 4.2.

Takeaway 10.2.2 #1  Function parameters are passed by value.

That is, when we call a function, all parameters are evaluated, and the parame-
ters (variables local to the function) receive the resulting values as initialization. The
function then does whatever it has to do and sends back the result of its computation
through the return value.

For the moment, the only possibility that we have for two functions to manipulate
the same object is to declare an object such that the declaration is visible to both func-
tions. Such global variables® have a lot of disadvantages: they make code inflexible
(the object to operate on is fixed) and are difficult to predict (the places of modification
are scattered all over) and maintain.

Takeaway 10.2.2 #2  Global variables are frowned upon.

A function with the following two properties is called pure®:

e The function has no effects other than returning a value.
e The function return value only depends on its parameters.

The only interest in the execution of a pure function is its result, and that result only
depends on the arguments that are passed. From the point of view of optimization, pure
functions can be moved around or even executed in parallel to other tasks. Execution
can start at any point when its parameters are available and must be finished before the
result is used.

Effects that would disqualify a function from being pure would be all those that
change the abstract state machine other than by providing the return value. For exam-
ple,

e The function reads part of the program’s changeable state by means other
than through its arguments.
e The function modifies a global object.

e The function keeps a persistent internal state between calls.”
e The function does 10.1°

[Exs 71Consider a macro sum (a, b) thatis implemented as a+b. What is the result of sum (5, 2) %7?
[Exs8][ ot max(a, b) be implemented as ((a) < (b) 2 (b) : (a)). What happens for
max (i++, 5)°?

IPersistent state between calls to the same function can be established with local static variables. We
will see this concept in subsection 13.2.
105¢h an 10 would occur, for example, by using print£.
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Pure functions are a very good model for functions that perform small tasks, but they
are pretty limited once we have to perform more complex ones. On the other hand,
optimizers love pure functions, since their effect on the program state can simply be
described by their parameters and return value. The influence on the abstract state
machine that a pure function can have is very local and easy to describe.

Takeaway 10.2.2 #3  Express small tasks as pure functions whenever possible.

With pure functions, we can go surprisingly far, even for an object-oriented pro-
gramming style if, as a first approach, we are willing to accept a little bit of copying
data around. Consider the following structure type rat that is supposed to be used for
rational arithmetic:

struct rat {
bool sign;
size_t num;
size_t denom;
}i

This is a direct implementation of such a type and nothing you should use as a
library outside the scope of this learning experience. For simplicity, it has a numerator
and denominator of identical type (size_t) and keeps track of the sign of the number
in member . sign. A first (pure) function is rat_get, which takes two numbers and
returns a rational number that represents their quotient.

rationals ¢

rat rat_get (signed sign, size_t num, size_t denom) [][
__unsequenced__]] {

rat ret = {
.sign = (sign < 0),
.num = num,
.denom = denom,

}i
return ret;

As you can see, the function is quite simple. It just initializes a compound literal
with the correct sign and numerator and denominator values. Notice that if we de-
fine a rational number this way, several representations will represent the same rational
number. For example, the number % is the same as %

To deal with this equivalence in the representations, we need functions that do
maintenance. The main idea is that such rational numbers should always be normal-
ized; that is, use the representation such that the numerator and denominator have
the fewest factors. Not only is this easier for humans to capture, but it also may avoid
overflows while doing arithmetic. Here, the gcd function is as we described earlier.

rationals.c

rat rat_get_normal (rat x) [[__unsequenced_ ]] {
size_t ¢ = gcd(x.num, x.denom);
X.num /= c;
x.denom /= c;
return x;




10. ORGANIZATION AND DOCUMENTATION 157

Another function does the inverse of normalization; it multiplies the numerator
and denominator by a redundant factor:

rationals.c

21 |rat rat_get_extended(rat x, size_t f) [[__unsequenced__ ]] {
22 x.num *= f;

23 x.denom *= f;

24 return x;

25 |}

This way, we may define functions that are supposed to be used by others: rat_get_prod
and rat_get_sum. rat_get_prod first computes a representation of the result in

a simple way— by just multiplying numerators and denominators, respectively. Then,
the resulting representation might not be normalized, so we call rat_get_normal
when we return the result.

rationals.c

27 |rat rat_get_prod(rat x, rat y) [[__unsequenced_ ]] {
28 rat ret = {

29 .sign = (x.sign != y.sign),

30 .num = X.num % y.num,

31 .denom = x.denom * y.denom,

32 )i

33 return rat_get_normal (ret);

34 |}

rat_get_sum is a bit more complicated. We have to find the common denomi-
nator before we can compute the numerator of the result and we have to keep track of
the signs of the two rational numbers to see how we should add up the numerators.

rationals.c

36 | rat rat_get_sum(rat x, rat y) [[__unsequenced ]] {
37 size_t c = gcd(x.denom, y.denom);
38 size_t ax = y.denom/c;

39 size_t bx = x.denom/c;

40 x = rat_get_extended (x, ax);

41 y = rat_get_extended(y, bx);

42 assert (x.denom == y.denom) ;

43

44 if (x.sign == y.sign) {

45 X.num += y.num;

46 } else if (x.num > y.num) {

47 X.num —-= y.num;

48 } else {

49 X.num = y.num - X.num;

50 x.sign = !x.sign;

51 }

52 return rat_get_normal (x);

53 |}
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As you can see, the fact that these are all pure functions ensures that they can be
casily used, even in our own implementation here.lFxs 11E 12'The only thing we have
to watch is to always assign the return values of our functions to a variable, such as the
assignment to x on line 40. Otherwise, since we don’t operate on the object x but only
on its value, changes during the function would be lost.!3

As mentioned earlier, because of the repeated copies, this may result in compiled
code that is not as efficient as it could be. But this is not dramatic at all: the overhead
from the copy operation can be kept relatively low by good compilers. With optimiza-
tion switched on, they usually can operate directly on the structure in place, as it is
returned from such a function. Then such worries might be completely premature be-
cause your program is short and sweet anyway or because its real performance problems
lay elsewhere. Usually, this should be completely sufficient for the level of programming
skills that we have reached so far. Later, we will learn how to use that strategy efficiently
by using the inline functions (subsection 16.1) and link-time optimization that many
modern tool chains provide.

Listing 10.1 lists all the interfaces of the rat type that we have seen so far (first
group). We have already looked at the interfaces to other functions that work on pointers
to rat. These will be explained in more detail in subsection 11.2.

ListinGg 10.1. A type for computation with rational numbers.

#ifndef RATIONALS_H
# define RATIONALS_H 1
# include <stdbool.h>
# include "euclid.h"

typedef struct rat rat;

struct rat
bool sign;
size_t num;
size_t denom;

i

/+ Functions that return a value of type rat. =*/

rat rat_get (signed sign, size_t num, size_t denom) [[
__unsequenced___]1];

rat rat_get_normal (rat x) [[__unsequenced_]];

rat rat_get_extended(rat x, size_t f) [[_ _unsequenced ]];

rat rat_get_prod(rat x, rat y) [[__unsequenced_ ]];

rat rat_get_sum(rat x, rat y) [[__unsequenced ]];

/+ Functions that operate on pointers to rat. =*/
void rat_destroy(rat* rp) [[__unsequenced__ ]];
rat* rat_init (ratx rp,
signed sign,
size_t num, size_t denom) [[__unsequenced__]];
rat* rat_normalize(rat* rp) [[__unsequenced_ ]];

[Exs ”]Thc function rat_get_prod can produce intermediate values that may cause it to produce wrong

results, even if the mathematical result of the multiplication is representable in rat. How is that possible?

[Exs 12]Rcimplcmv:nl, the rat_get_prod function so that it produces a correct result every time the mathe-

matical result value is representable in a rat. This can be done with two calls to rat_get_normal instead
of one.

1398 now provides the [ [nodiscard] ] attribute that suggests that the compiler should issue a warning
if we do not use the return value.
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28 |ratx rat_extend(rat* rp, size_t f) [[__unsequenced_ ]];
29 | ratx rat_sumup (ratx rp, rat y) [[__unsequenced_ ]];

30 |ratx rat_rma(ratx rp, rat x, rat y) [[__unsequenced_ ]];
31

32 |/ Functions that are implemented as exercises. =/

33 | /** @brief Print @a x into @a tmp and return tmp. xx/

34 |char constx rat_print (size_t len, char tmp[len], rat constx x);
35 | /+x* @brief Print Ra x normalize and print. x=*/

36 | char const* rat_normalize_print (size_t len, char tmp[len],

37 rat constx x);

38 |ratx rat_dotproduct (rat rp[static 1], size_ t n,

39 rat const A[n], rat const B[n]);
40

41 |#endif

10.2.8. Attributes. Attributes recently appeared in C23. They are designed to play
an important role as an annotation tool and are meant to facilitate the development of
new features by compiler and tool implementors. For example, the [ [__unsequenced_ ] ]
attributes in listing 10.1 indicates that most functions there have the unsequenced prop-
erty, which is a generalization of the property of a function to be pure. Now when ap-
plication code is compiled that only sees this header file, the compiler still can make
strong assumptions about the function. If it has no pointer parameters or pointer
return, the function is pure and the return value only depends on the argument val-
ues that are passed into a call. If it has pointer parameters or pointer returns (such as
rat_normalize; see the following discussion), the possible interference with a func-
tion call is limited to the objects that are visible through these pointers.

(€28 introduces a handful of standard attributes together with macro-safer variants that
have double underscores such as __unsequenced__. They are

deprecated fallthrough maybe unused nodiscard
noreturn unsequenced reproducible

We have already seen most of them in action. Currently, only two, [ [deprecated] ]
and [ [nodiscard] ], may receive an argument in the form of a string:

[ [deprecated("tell me_all_about_it")]].
The meanings of these attributes are as follows:

e The [ [deprecated] ] attribute indicates that the feature to which it is at-
tached is not meant to be used directly. Reasons for that can be multiple,
but the main reason is probably that the feature is obsolete (and might be
removed) or that it is not part of a public interface. The effect of using a
feature with such an attribute is usually that the compiler issues a diagnos-
tic. But contrary to similar implementation-defined attributes, a deprecated
feature should not be diagnosed when it is used within another feature that is
also deprecated. Section 13.1.1 has a complete example that highlights that
property of [ [deprecated]].

e As we have seen in section 3.3, switch statements may have a very com-

plicated control flow. To avoid errors, many coding styles try to restrict that
control flow so falling from one case into the other without a break is con-
sidered erroneous. The [ [fallthrough]] attribute indicates that such a
possible control flow is intentional and that no diagnosis should be issued.
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e At some places we may have declarations or definitions of identifiers that will
not necessarily be used in the sequel. Examples include names of unused
parameters that are given for documentation purposes or statie functions
in a header file that are not always used by code that includes the header. The

[ [maybe_unused] ] avoids diagnostics in such cases.

e The main use of the [ [nodiscard] ] attribute is to indicate that a func-
tion has a return value that is important and that should always be taken
into account. This is particularly important for the allocation of storage; sec-
tion 13.1.1 also shows an example of this usage.

o As we have seen in section 8.8, the [ [noreturn] ] attribute is also associ-
ated to a function. It indicates that the function will never return to the caller
and, consequently, the compiler may optimize the surrounding code.

e The [ [unsequenced]] and [ [reproducible] ] attributes will be dis-
cussed in more detail in section 16.3.

In addition to the standard attributes, there are prefixed attributes. Their names have the
form

prefix::suffix

where pre fix is an identifier that is usually chosen by a compiler or tool implementor,
: : is a new syntax token that in C appears nowhere else, and suffix is an identifier
that indicates the particular feature or property. Current prefixes | know of are for the
three compiler families c1ang, gnu and msvc. But maybe surprisingly, this is not a
strict boundary; for example, the clang compiler implements many attributes from
the gnu compilers and keeps the gnu prefix there.

In general, such prefixed attributes may also receive arguments; the only syntactic
constraint is that the argument has to contain correctly nested balanced pairs of (), [1,
and {} parenthesis. Obviously, the implementation is free to reject anything it does
not understand, but that is the only restriction from the point of view of the standard.
For example, gcc and clang support the format attribute.

#if _ has_c_attribute(_gnu_ ::_ format_ )
[[__gnu__::__ format__ (__printf__, 3, 4)]]
#fendif
int snprintf (char xbuf, size t size, const char xfrmt, ...);

Here, this attribute indicates that snprint £ processes a format specification alaprint £
in position 8 and that the variable argument list starts at position 4. With such infor-
mation, the compiler then can issue a warning on formats that are not string literals or
on format specifiers that receive the wrong types of arguments.

With the attribute feature, C23 also provides a test feature __has_c_attribute
for attributes. This feature can be used in preprocessor conditionals, similar to defined
for macros. In the previous example, the platform-specific attribute __gnu___
___format___is only used if it is supported.

To be sure that the test feature even exists, it can also be queried. Our fallback
header <c23-fallback.h> has the following to accommodate platforms that might
not yet implement this feature. If a compiler does not have the feature __has_c__
attribute, it is very unlikely it will implement attributes at all.

Beware that neither the standard attributes nor identifiers in prefixed attributes are
keywords. Therefore, they can and will interact with application macros, possibly with
disastrous consequences.

Takeaway 10.2.3 #1  Identifiers in attributes can be replaced by preprocessing.
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c23-fallback.h

#ifndef _ has_c_attribute
# define _ has_ c_attribute (X) 0
#endif

Therefore, C28 foresees that all its standard attributes additionally have a form that
is prefixed and postfixed with double underscores and it recommends that all prefixed
attributes additionally have such a modified form, too. Because identifiers with double
underscores are reserved, application-defined macros are guaranteed not to interact
with these.

Takeaway 10.2.3 #2  Use the double underscore forms of attributes in header files.
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Summary

For each part of a program, we have to distinguish the object (what are we
doing?), the purpose (what are we doing it for?), the method (how are we
doing it?), and the implementation (in which manner are we doing it?).

The function and type interfaces are the essence of software design. Changing
them later is expensive.

An implementation should be as literal and obvious in its control flow as pos-
sible. Complicated reasoning should be avoided and made explicit where
necessary.

Attributes can add valuable information to the interface and the implemen-
tation that may improve diagnostic, safety, security, and performance.
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11. Pointers

This section covers

e Introduction to pointer operations
e Using pointers with structs, arrays, and functions

Pointers are the first real hurdle to a deeper understanding of C. They are used in
contexts where we have to be able to access objects from different points in the code or
where data is structured dynamically on the fly.

The confusion of inexperienced programmers between pointers and arrays is no-
torious, so be warned that you might encounter difficulties in getting the terms correct.
On the other hand, pointers are one of the most important features of C. They are a big
plus to help us abstract from the bits and odds of a particular platform and enable us to
write portable code. So, please, equip yourself with patience when you work through
this section because it is crucial for the understanding of most of the rest of this book.

The term pointer” stands for a specially derived type construct that “points” or
“refers” to something. We have seen the syntax for this construct, a type (the referenced
type®) that is followed by a « character. For example, p0 is a pointer to a double:

idouble* p0; i
!

The idea is that we have one variable (the pointer) that points to the memory of another

object:
00—

An important distinction that we will have to make throughout this section is between
the pointer (to the left of the arrow) and the unnamed object that is pointed to (to the
right).

Our first usage of a pointer will be to break the barrier between the code of the
caller of a function and the code inside a function, allowing us to write functions that
are not pure. This example will be a function with this prototype:

[ ]
‘void double_swap (doublex p0, doublex pl);
L

Here, we see two function arguments that “point” to objects of type double. In the
example, the function double_swap is supposed to interchange (swap) the contents
of these two objects. For example, when the function is called, p0 and p1 could be
pointing to double variables d0 and d1, respectively, that are defined by the caller:

do d1i
p0 —|double 3.5 double 10 [«— pl

By receiving information about two such objects, the function double_swap can ef-
fectively change the contents of the two double objects without changing the pointers
themselves:

do dl
p0 —|double 10 double 3.5 —pl

Using pointers, the function will be able to apply the change directly to the variables of
the calling function; a pure function without pointers or arrays would not be able to do
this.

In this section, we will go into the details of different operations with pointers (sub-
section 11.1) and specific types for which pointers have particular properties: structures
(subsection 11.2), arrays (subsection 11.38), and functions (subsection 11.4).
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11.1. Pointer operations. Pointers are an important concept, so there are several
C language operations and features just for them. Most importantly, specific opera-
tors allow us to deal with the “pointing-to” and “pointed-to” relation between point-
ers and the objects to which they point (subsection 11.1.1). Also, pointers are con-
sidered scalars®: arithmetic operations are defined for them, offset additions (subsec-
tion 11.1.2) and subtractions (subsection 11.1.8). They have state (subsection 11.1.4)
and a dedicated “null” state (subsection 11.1.5).

11.1.1. Address-of and object-of operators. 1f we have to perform tasks that can’t be
expressed with pure functions, things get more involved. We have to poke around in
objects that are not variables of the function. Pointers are a suitable abstraction to do
this.

So, let us use the function double_swap from earlier to swap the contents of two
double objects d0 and d1. For the call, we use the unary address-of¢ operator “&”.
It allows us to refer to an object through its address®. A call to our function could look

like this:

| double_swap (&d0, &dl);

The type that the address-of operator returns is a pointer type® and can be specified
with the * notation that we have seen. An implementation of the function could look
like this: Inside the function, pointers p0 and p1 hold the addresses of the objects on

void double_swap (doublex p0, doublex pl) {
auto tmp = *p0;
*p0 = *pl;
*pl = tmp;

which the function is supposed to operate (in our example, the addresses of d0 and d1).
But the function knows nothing about the names of the two variables d0 and d1; it only
knows p0 and p1.

<unknown> <unknown>

p0 —|double 3.5 double 10 «—pl

To access them, another construct that is the inverse of the address-of operator is

used: the unary object-of¢ operator “+™ xp0 then is the object corresponding to the

first argument. With the previous call, that would be d0, and similarly «p1 is the object
a1 .[Exs 14]

*p0 *pl

p0 —|double 3.5 double 10 |«— pl

Please note that the » character plays two different roles in the definition of double_swap.
In a declaration, it creates a new type (a pointer type), whereas in an expression, it
dereferencesC the object to which a pointer refersC. To help distinguish these two us-
ages of the same symbol, we usually flush the * to the left with no blanks in between if

it modifies a type, such as in

i doublex pO0; i

and to the right if it dereferences a pointer in an expression, such as in

i *p0 = *pl;
L |

[Exs 141yWrite a function that receives pointers to three objects and that shifts the values of these objects cycli-
cally.
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Remember from subsection 6.2 that in addition to holding a valid address, pointers
may also be null or invalid.

Takeaway 11.1.1 #1 A program execution that uses  with an invalid or null pointer fails.

In practice, though, both cases will usually behave differently. The first might access
a random object in memory and modify it. Often this leads to bugs that are difficult to
trace because it will poke into objects it is not supposed to. The second, if the pointer is
null, will manifest early during development and nicely crash our program. Consider
this to be a feature.

11.1.2. Pointer addition. We already have seen that a valid pointer holds the ad-
dress of an object of its reference type, but actually C assumes more than that

Takeaway 11.1.2 #1 A valid pointer refers to the first element of an array of the reference
type.

In other words, a pointer may be used to refer not only to one instance of the
reference type but also to an array of an unknown length 7.

0 n—1
0 —[double]---- -

This entanglement between the concept of pointers and arrays is taken an important
step further in the syntax. In fact, for the specification of the function double_swap,
we wouldn’t even need the pointer notation. In the notation we have used so far, it can
equally be written as

void double_swap (double pO[static 1], double pl[static 1]) {
auto tmp = p0[0];
p0[0] = pl[0];
pl[0] = tmp;

}

Both the use of array notation for the interface and the use of [0] to access the first
element are simple rewrite operations® that are built into the C language. We will see
more of this later.

Simple additive arithmetic allows us to access the following elements of this array.
This function sums all elements of an array:

double sumO (size_t len, double const* a) {

double ret = 0.0;

for (size_t 1 = 0; 1 < len; ++i) {
ret += *(a + 1)

’

}

return ret;

Here, the expression a+1i is a pointer that points to the i'™ element in the array:

0 i len—1
NN prrereve BN rrenscoe IS double
7
a + 1

Pointer addition can be done in different ways, so the following functions sum up
the array in exactly the same order:
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double suml (size_t len, double constx* a) {
double ret = 0.0;
for (double constx p = a; p < atlen; ++p) {
ret += *p;
}

return ret;

double sum?2 (size_t len, double const* a) {
double ret = 0.0;
for (double constxconst aStop = atlen; a < aStop; ++a) {
ret += xaj;
}
return ret;

}

In iteration 7 of function sum1, we have the following picture:

0 i len—1
2 — [doubla] -----: [double] «eeveer-.
T
p atlen

The pointer p walks through the elements of the array until it is greater than or equal
to a+1len, the first pointer value that lies beyond the array.
For function sum2, we have the following picture:

0 i len—1
double| ::-:-:--. double| ::--..-. double
T T

a asStop

Here, a refers to the i element of the array. The O™ element is not referenced again
inside the function, but the information about the end of the array is kept in the variable
aStop.

These functions can then be called analogously to the following:

double s0_7 = sumO (7, &A[0]); // For the whole
double sl1_6 = sum0 (6, &A[l]); // For the last 6
double s2_3 = sum0 (3, &A[2]); // For the 3 in the middle

Unfortunately, there is no way to know the length of the array hidden behind a
pointer, so we have to pass it as a parameter into the function. The trick with sizeof,
which we saw in subsection 6.1.8, doesn’t work.

Takeaway 11.1.2 #2  The length of an array object cannot be reconstructed from a pointer.

So, here, we see a first important difference from arrays.

Takeaway 11.1.2 #3  Pointers are not arrays.

If we pass arrays through pointers to a function, it is important to retain the real
length of the array. This is why we prefer the array notation for pointer interfaces
throughout this book:

double sumO (size_t len, double const a[len]);
double suml (size_t len, double const a[len]);
double sum?2 (size_t len, double const a[len]);

These specify exactly the same interfaces as shown earlier, but to the casual reader of
the code, they clarify that a is expected to have 1en elements.
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11.1.8. Pointer subtraction and difference. The pointer arithmetic we have discussed
so far concerned addition of an integer and a pointer. There is also an inverse operation
that can subtract an integer from a pointer. If we wanted to visit the elements of the
array downward, we could use this:

double sum3 (size_t len, double constx* a) {
double ret = 0.0;
double constx p = atlen-1;
do {
ret += *p;
TP
} while (p > a);
return ret;

}

Here, p starts out at a+ (Len—1), and in the i iteration, the picture is

(len—1)—i len—1

0
a — |double| :--:----- double| --:------ double
T T

jS) at(len-1)

Note that the summation order in this function is inverted.!®

There is also an operation, pointer difference®, that takes two pointers and com-
putes their distance counted in number of elements. To see that, we extend sum3 to
a new version that checks for an error condition (one of the array elements being an
infinity). In that case, we want to print a comprehensive error message and return the
culprit to the caller:f

double sum4 (size_t len, double constx* a) {
double ret = 0.0;
double constx* p = atlen-1;
do {
if (isinf (xp)) {
fprintf (stderr,
"element, \%tu_of_array, at, \%p_is_infinite\n",
p-a, // Pointer difference!
(voidx) a) ; // Prints the pointer value
return xp;
}
ret += *p;
—~p;
} while (p > a);
return ret;

}

Here, we use the expression p—a to compute the position of the actual element in the

array.
This is only defined if the two pointers refer to elements of the same array object.

If they are not, the program is erroneous and bad things may happen.

Takeaway 11.1.8 #1  Only subtract pointers to elements of the same array object.

The value of such a difference then is simply the difference of the indices of the
corresponding array elements:

I5Because of differences in rounding, the result might be slightly different than for the first three functions

in this series.

165 sinf comes from the <math . h> header.
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double A[4] = { 0.0, 1.0, 2.0, -3.0, };
[ [maybe_unused]] doublex p = &A[1l];
[ [maybe_unused]] doublex g = &A[3];

assert (p—q == -2);

We have stressed the fact that the correct type for sizes of objects is size_t, an
unsigned type that on many platforms is different from unsigned.z This has its
correspondence in the type of a pointer difference: in general, we cannot assume that a
simple int is wide enough to hold the possible values. Therefore, the standard header
<stddef .h> provides us with another type. On most architectures, it is just the signed
integer type that corresponds to size_t, but we shouldn’t care much.

Takeaway 11.1.3 #2  All pointer differences have type ptrdi ££_t.

Takeaway 11.1.3 #3 Use ptrdiff_t to encode signed differences of positions or sizes.

Function sum4 also shows a recipe to print a pointer value for debugging purposes.
We use the format character $p, and the pointer argument is cast by (voidx) a to the
obscure type voidx. For the moment, take this recipe as a given; we do not yet have
all the baggage to understand it in full (more details will follow in subsection 12.4).

Takeaway 11.1.8 #4  For printing, cast pointer values to voidx* and use the format %p.

11.1.4. Pointer validity. Earlier (takeaway 11.1.1 #1), we saw that we must be care-
ful about the address that a pointer contains (or does not contain). Pointers have a value,
the address they contain, and that value can change.

Setting a pointer to null if it does not have a valid address is very important and
should not be forgotten. It helps to check and keep track of whether a pointer has been
set.

Takeaway 11.1.4 #1  Pointers have a truth value.

To avoid clunky comparisons (takeaway 8.1 #3), in C programs, you often will see
code like this:

char constx name = nullptr;
// Do something that eventually sets name

if (name) {

printf ("today’ s _name_is,_%s\n", name);
} else {

printf ("today,_we, _are_anonymous\n") ;

}

Therefore, it is important to control the state of all pointer variables. We have to ensure
that pointer variables are always null, unless they point to a valid object that we want to
manipulate.

Takeaway 11.1.4 #2  Set pointer variables to null as soon as you can.

17The attribute [ [maybe_unused] ] avoids spurious warnings if the compilation has NDEBUG defined
and p and g are otherwise unused.
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In most cases, the simplest way to ensure this is to initialize pointer variables ex-
plicitly (takeaway 6.2 #6).

We have seen some examples of representations of different types—that is, the way
the platform stores the value of a particular type in an object. The representation of
one type (say, size_t) could be completely senseless to another type (for example,
double). As long as we only use variables directly, C’s type system will protect us
from any mixup of these representations; a size_t object will always be accessed as
such and never be interpreted as a (senseless) double.

If we do not use them carefully, pointers can break that barrier and lead us to code
that tries to interpret the representation of a size_t as double. More generally, C
even has coined a term for bit patterns that are nonsense when they are interpreted as
a specific type: a non-value representation® for that type.!®

Takeaway 11.1.4 #3 A program execution that accesses an object that has a non-value rep-
resentation for its type fails.

Ugly things can happen if you do, so please don’t try.
Thus, not only must a pointer be set to an object (or null), but such an object also
must have the correct type.

Takeaway 11.1.4 #4  When dereferenced, a pointed-to object must be of the designated type.

As a direct consequence, a pointer that points beyond array bounds must not be
dereferenced:

double A[2] = { 0.0, 1.0, };

doublex p = &A[0];

printf ("element_%g\n", xp); // Referencing object

++p; // Valid pointer

printf ("element _%g\n", xp); // Referencing object

++p; // Valid pointer, no object
printf ("element_%g\n", *p); // Referencing non-object

// Program failure

On the last line, p has a value that is beyond the bounds of the array. Even if
this might be the address of a valid object, we don’t know anything about the object it
is pointing to. So even if p is valid at that point, accessing the contents as a type of
double makes no sense, and C generally forbids such access.

In the previous example, the pointer addition itself is correct, as long as we don’t
access the object on the last line. The valid values of pointers are all addresses of array
elements and the address beyond the array. Otherwise, £or loops with pointer addition
as in the example wouldn’t work reliably.

Takeaway 11.1.4 #5 A pointer must point to a valid object, one position beyond, or be null.

So, the example only worked up to the last line because the last ++p left the pointer
value just one element after the array. This version of the example still follows a similar
pattern as the one before:

double A[2] = { 0.0, 1.0, };

doublex p = &A[O0];

printf ("element _%g\n", xp); // Referencing object

B =25 // Valid pointer, no object

printf ("element _%g\n", xp); // Referencing non-object
// Program failure

18prior to (28, the term that was used was trap representation’ .
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However, this last example may crash at the increment operation:

double A[2] = { 0.0, 1.0, };

doublex p = &A[O0];

printf ("element _%g\n", xp); // Referencing object

Pl =3 // Invalid pointer addition
// Program failure

Takeaway 11.1.4 #6 A program execution that computes a pointer value outside the bounds
of an array object (or one element beyond) fails.

11.1.5. Null pointers. You may have wondered why, in all this discussion about
pointers, the macro NULL has not yet been used. The reason is that, unfortunately, the
original concept in pre-C28 of null pointer constants, given as a “generic pointer of value
0,” didn’t succeed very well.

C has the concept of a null pointer® that corresponds to a null value of any pointer
type.E Here,

double constxconst nix = nullptr;
double constxconst nax = nix;

nix and nax would be pointer objects of value null. But unfortunately, a null pointer
constant® is then not what you'd expect.

First, here, the term constant refers to a compile-time constant, not to a const-
qualified object. For that reason, both pointer objects are not null pointer constants.
Second, the permissible type for these constants in pre-C23 was quite peculiar: it may
be any constant expression of integer type and value 0 or of type voidx. Other pointer
types are not permitted, and we will learn about pointers of that “type” in subsec-
tion 12.4.

The definition in the C standard of a possible expansion of the macro NULL is
quite loose; it just has to be a null pointer constant. Therefore, a pre-C23 compiler
could choose any of the following for it:

Expansion Type

0U unsigned

0 signed

14 \ O 4

Enumeration constant of value 0

0UL unsigned long

0L signed long

OULL unsigned long long
OLL signed long
(voidx*) 0 voidx

Commonly used values are 0, 0L, and (voidx) O.ﬁ

It is important to note that the type behind NULL is not prescribed by the C stan-
dard. Often, people use it to emphasize that they are talking about a pointer constant,
which it simply isn’t on many platforms. Using NULL in a context that we have not
mastered completely is even dangerous. This will in particular appear in the context
of functions with a variable number of arguments, which will be discussed in subsec-
tion 17.4.2. For the moment, we will go for the simplest solution:

Takeaway 11.1.5 #1 Use nullptr instead of NULL.

19Note the different capitalization of null versus NULL.

20y, theory, there are even more possible expansions for NULL, such as ((char)+0) and
((short)-0).
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NULL hides more than it clarifies, and because C compilers are always trying to be
backward compatible, you will never be sure what you get.

11.2. Pointers and structures. Pointers to structure types are crucial for most
coding in C, so some specific rules and tools have been put in place to ease this typ-
ical usage. For example, let us consider the task of normalizing a struct timespec
as we have encountered it previously. The use of a pointer parameter in the following
function allows us to manipulate the objects directly:

timespec.c

timespec_diff:

compute a time difference

This uses a double to compute the time. If we want to be able to track times
without further loss of precision and have double with 52 bit mantissa, this cor-
responds to a maximal time difference of about 4.5E6 seconds, or 52 days.

double timespec_diff (struct timespec constx later,
struct timespec constx sooner) {
/+ Be careful: tv_sec could be an unsigned type =/
if (later->tv_sec < sooner->tv_sec)
return -timespec_diff (sooner, later);
else
return
(later->tv_sec - sooner—->tv_sec)
/* tv_nsec is known to be a signed type. x/
+ (later->tv_nsec - sooner->tv_nsec) x 1E-9;

For convenience, we will use a new operator, —>. Its arrow-like symbol is meant
to represent a pointer as the left operand that “points” to a member of the underlying
struct as the right operand. It is equivalent to a combination of » and .. To have
the same effect, we would have to use parentheses and write (*a) .tv_sec instead
of a—>tv_sec. This could quickly become a bit clumsy, so the —> operator is what
everybody uses.

lv_sec tv_nsec

a— ’ time t | long‘

| |
| a->tv_nsec
a—->tv_sec

Observe that a construct like a—>tv_nsec is nof a pointer, but an object of type 1ong,
the number itself.

As another example, let us again consider the type rat for rational numbers that
we introduced in subsection 10.2.2. The functions operating on pointers to that type
in listing 10.1 could be written as follows:

rationals.c

void rat_destroy(ratx rp) [[___unsequenced ]] {
if (rp) *rp = (rat){ };

The function rat_destroy ensures that all data that might be present in the object
is erased and set to all-bits 0:
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rationals.c

rat+ rat_init (ratx rp,
signed sign,
size_t num,
size_t denom) [[__unsequenced_ ]] {
if (rp) *rp = rat_get(sign, num, denom);
return rp;

rationals.c

rat* rat_normalize(rat* rp) [[__unsequenced ]] {
if (rp) *rp = rat_get_normal (xrp);
return rp;

rationals.c

ratx rat_extend(ratx rp, size_t f) [[__ unsequenced ]] {
if (rp) *rp = rat_get_extended(xrp, f);
return rp;

The other three functions are simple wrappersC around the pure functions that we
already know. We use two pointer operations to test validity and then, if the pointer is
valid, to refer to the object in question. So, these functions can be safely used, even if
the pointer argument is nul].[Fxs 21(Exs 221

All four functions check and return their pointer argument. This is a convenient
strategy to compose such functions, as we can see in the definitions of the following two
arithmetic functions:

rationals.c

rat* rat_rma(ratx rp, rat x, rat y) [[__unsequenced_ ]] {
return rat_sumup (rp, rat_get_prod(x, vy));

The function rat_rma (“rational multiply add”) comprehensively shows its pur-
pose: to add the product of the two other function arguments to the object referred to
by rp. It uses the following function for the addition:

rationals ¢

rat+ rat_sumup (ratx rp, rat y) [[__unsequenced ]] {
size_t ¢ = gcd(rp->denom, y.denom);
size t ax = y.denom/c;
size_t bx = rp->denom/c;
rat_extend(rp, ax);
y = rat_get_extended(y, bx);
assert (rp—>denom == y.denom) ;

[Exs 21]Implement function rat_print as declared in listing 10.1. This function should use —> to access the

members of its rat » argument. The printout should have the form +nom/denum.

[Exs 22]Imp]cmcnt rat_print_normalized by combining rat_normalize and rat_print.
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if (rp—->sign == y.sign) {
rp—>num += y.num;
} else if (rp->num > y.num) {

rp—>num —-= y.num;

} else {
rp—>num = y.num — rp->num;
rp->sign = !rp->sign;

}

return rat_normalize (rp);

The function rat_sumup is a more complicated example, where we apply two
maintenance functions to the pointer arguments.[F* 23!

Another special rule applies to pointers to structure types: they can be used even if
the structure type itself is unknown. Such opaque structuresC are often used to strictly
separate the interface of a library and its implementation. For example, a fictive type
toto could be presented in an include file as follows:

/* forward declaration of struct toto */
struct toto;

struct totox toto_get (void);

void toto_destroy (struct totox);

void toto_doit (struct totox, unsigned);

Neither the programmer nor the compiler would need more than that to use the
type struct toto. The function toto_get could be used to obtain a pointer to
an object of type struct toto, regardless how it might have been defined in the
translation unit that defines the functions. And the compiler gets away with it because
it knows that all pointers to structures have the same representation, regardless of the
specific definition of the underlying type.

Often, such interfaces use the fact that null pointers are special. In the previous
example, toto_doit (nullptr, 42) could be a valid use case. This is why many
C programmers don’t like it if pointers are hidden inside typedef£:

/+ forward declaration of struct toto_s and type toto hiding a pointer x/
typedef struct toto_sx toto;

toto toto_get (void) ;

void toto_destroy (toto);

void toto_doit (toto, unsigned);

This is valid C, but it hides the fact that nullptr is a special value that t ot o_doit
may receive.

Takeaway 11.2 #1  Don't hide pointer types inside a typedef.

This is not the same as just introducing a typede£ name for the struct, as we
have done before:

/* forward declaration of struct toto and typedef toto x/
typedef struct toto toto;

totox toto_get (void) ;

void toto_destroy (totox);

void toto_doit (toto*, unsigned);

[Exs 23]lmplemenl the function rat_dotproduct from listing 10.1 such that it computes Z;:ol Ali] = BJi]

and returns that value in xrp.



174 2. COGNITION

Here, the fact that the interface receive a pointer is still sufficiently visible.

CHALLENGE 12 (text processor). For a text processor, can you use a doubly linked list to store
text? The idea is to represent a “blob” of text through a struct that contains a string (for the
text) and pointers to preceding and following blobs.

Can you build a function that splits a text blob in two at a given point?

One that joins two consecutive text blobs?

One that runs through the entire text and puts it in the form of one blob per line?

Can you create a function that prints the entire text or prints until the text is cut off due to the
screen size?
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11.3. Pointers and arrays. We are now able to attack the major hurdles to un-
derstanding the relationship between arrays and pointers: the fact that C uses the same
syntax for pointer and array element access and that it rewrites array parameters of
functions to pointers. Both features provide convenient shortcuts for the experienced
C programmer but also are a bit difficult for novices to digest.

11.3.1. Array and pointer access are the same. The following statement holds regard-
less of whether A is an array or a pointer.

Takeaway 11.8.1 #1  The two expressions A[i] and + (A+1) are equivalent.

If it is a pointer, we understand the second expression. Here, it just says that we
may write the same expression as A [ i ]. Applying this notion of array access to pointers
should improve the readability of your code. The equivalence does not mean that,
suddenly, an array object appears where there was none. If A is null, A[i ] should crash
nicely, as should * (A+1).

If A is an array, * (A+1) shows our first application of one of the most important
rules in C, called array-to-pointer decay®.

Takeaway 11.3.1 #2 (array decay) Evaluation of an array A returns §A[0].

In fact, this is the reason there are no “array values” and all the difficulties they
entail (takeaway 6.1.2 #2). Whenever an array occurs that requires a value, it decays to
a pointer, and we lose all additional information.

11.8.2. Array and pointer parameters are the same. Because of the decay, arrays can-
not be function arguments. There would be no way to call such a function with an array
parameter; before any call to the function, an array that we feed into it would decay into
a pointer, and thus the argument type wouldn’t match.

But we have seen declarations of functions with array parameters, so how did they
work? The trick C gets away with is to rewrite array parameters to pointers.

Takeaway 11.8.2 #1  In a function declaration, any array parameter rewrites to a pointer.

Think of this and what it means for a while. Understanding this “chief feature” (or
character flaw) is central for coding easily in C.

To come back to our examples from subsection 6.1.5, the functions that were writ-
ten with array parameters could be declared as follows:

size_t strlen(char constx s);
charx strcpy(charx target, char constx source);
signed strcmp (char constx s0, char constx sl);

These are completely equivalent, and any C compiler should be able to use both forms
interchangeably.

Which one to use is a question of habit, culture, or other social contexts. The rule
that we follow in this book is to use array notation if we suppose it can’t be null and
pointer notation if it corresponds to a single item of the base type, which can also be
null to indicate a special condition.

If semantically a parameter is an array, we also note what size we expect the array
to be, if possible. And to make it possible, it is usually better to specify the length before
the arrays/pointers. An interface, such as
tells a whole story. This becomes even more interesting if we handle two-dimensional
arrays. A typical matrix multiplication could look as follows:
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double double_copy(size_t len,
double target[len],
double const source[len]);

void matrix_mult (size_t n, size_t k, size_t m,
double C[n] [m],
double const A[n] [k],
double const B[k] [m]) {

for (size_ t i = 0; 1 < n; ++i) {
for (size_t § = 0; j < m; ++3) {
C[i]1[3] = 0.0;

for (size . t 1 = 0; 1 < k; ++1) {
C[il([J] += A[i]1[11xB[1]1[31;
}

The prototype is equivalent to the less readable

void matrix_mult (size_t n, size_t k, size t m,
double C[nl) [m],
double const (A[n]) [k],
double const (B[k]) [m]);

and

void matrix_mult (size_t n, size_t k, size t m,

double (xC) [m],
double const (*A) [k],
double const (*B) [m]);

Observe that once we have rewritten the innermost dimension as a pointer, the param-
eter type is not an array anymore, but a pointer to an array. So, there is no need to rewrite
the subsequent dimensions.

Takeaway 11.8.2 #2  Only the innermost dimension of an array parameter is rewritten.

Finally, we have gained a lot by using array notation. We have, without any prob-
lems, passed pointers to VLAs into the function. Inside the function, we can use con-
ventional indexing to access the elements of the matrices. Not much in the way of
acrobatics is required to keep track of the array lengths.

Takeaway 11.8.2 #3  Declare length parameters before array parameters.

They simply have to be known at the point where you first use them.
Unfortunately, C generally gives no guarantee that a function with array-length
parameters is always called correctly.

Takeaway 11.8.2 #4  The validity of array arguments to functions must be guaranteed by
the programmer.

If the array lengths are known at compile time, compilers may be able to issue
warnings, though. But when array lengths are dynamic, you are mostly on your own:
be careful.

Note also that in the previously discussed prototypes, we have matrices A and B
where the base type is const-qualified. Doing this consistently is only possible since
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C23, which changed the rules for this for the benefit of usability. Before C23, the
following code would produce an error because the target types of the parameters A
and B are qualified differently than the arguments:

double matA[2] [2] = 0, 0,1},
0

{ { 0, 0,1}

double matB[2] [2] {0, 0,}, { O, O,}, };
{0, 0,}

)

{
{
double matC[2] [2] { {0, 0,1}, ’
matrix_mult (2, 2, 2, matC, matA, matB

Previously, the rules had been the same as if we had used a function that uses a
pointer-to-pointer instead of a pointer-to-array:

void fake_mult (size_t n, size_t k, size t m,
double x%x C,
double constx*x A,
double constxx B);

doublex* fakeA = (doublex[2]) {
(double[2]){ 0, 0, },
(double(2]){ O, O, }, };

doublex* fakeB = (doublex[2]) {
(double[2]){ 0, 0, 1},
(double[2]){ 0, O, }, };

doublex* fakeD = (doublex[2]) {
(double[2]){ 0, 0, },

(double[2]){ 0, 0, }, };
// error, »fakeA and *A not compatible
fake_mult (2, 2, 2, fakeC, fakeA, fakeB);

11.4. Function pointers. There is yet another construct for which the address-of
operator & can be used: functions. We saw this concept pop up when discussing the
atexit function (section 8.8), which is a function that receives a function argument.
The rule is similar to that for array decay, which we described earlier:

Takeaway 11.4 #1 (function decay) A function name without following parenthesis de-
cays to a pointer to its start.

Syntactically, functions and function pointers are also similar to arrays in type dec-
larations and as function parameters:

typedef void atexit_function (woid);

// Two equivalent definitions of the same type, which hides a pointer
typedef atexit_functionx atexit_function_pointer;

typedef void (*atexit_function_pointer) (void);

// Five equivalent declarations for the same function

void atexit (void f (void));

void atexit (void (xf) (void));

void atexit (atexit_function f);

void atexit (atexit_functionx f);

void atexit (atexit_function_pointer f);

Which of the semantically equivalent ways of writing the function declaration is
more readable could certainly be the subject of much debate. The second version,
with the (xf) parentheses, quickly gets difficult to read, and the fifth is frowned upon
because it hides a pointer in a type. Among the others, I personally slightly prefer the
fourth over the first.

The C library has several functions that receive function parameters. We have seen
atexit and at_quick_exit. Another pair of functions in <stdlib.h> provides
generic interfaces for searching (bsearch) and sorting (gsort):

<stdlib.h>
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typedef int compare_function(void constx, void constx);

voidx bsearch (void const* key, wvoid constx base,
size t n, size_t size,
compare_functionx compar);

void gsort (voidx base,
size t n, size_t size,
compare_functionx compar);

Both receive an array base as an argument on which they perform their task. The
address to the first element is passed as a void pointer, so all type information is lost.
To be able to handle the array properly, the functions have to know the size of the
individual elements (size) and the number of elements (n).

In addition, they receive a comparison function as a parameter that provides the in-
formation about the sort order between the elements. By using such a function pointer,
the bsearch and gsort functions are very generic and can be used with any data
model that allows for an ordering of values. The elements referred by the base pa-
rameter can be of any type T (int, double, string, or application defined) as long as
the size parameter correctly describes the size of T and as long as the function pointed
to by compar knows how to compare values of type T consistently.

A simple version of such a function would look like this:

int compare_unsigned(void constx a, wvoid constx Db) {
unsigned constx A = 3;
unsigned constx B = Db;
if (*A < *B) return -1;
else if (*A > xB) return +1;
else return 0;

The convention is that the two arguments point to elements that are to be com-
pared, and the return value is strictly negative if a is considered less than b, 0 if they
are equal, and strictly positive otherwise.

The return type of int seems to suggest that int comparison could be done more
simply:

/* An invalid example for integer comparison =/
int compare_int (void const* a, void constx Db) {
int constx A = a;
int const* B = Db;
return *A - *B; // may overflow!

}

But this is not correct. For example, if 2 is big, say INT_MAX, and =B is negative, the
mathematical value of the difference can be larger than INT_MAX.

Because of the void pointers, a usage of this mechanism should always take care
that the type conversions are encapsulated similar to the following:

/* A header that provides searching and sorting for unsigned. x/

/* No use of inline here; we always use the function pointer. x/
extern int compare_unsigned(void constx, void constx);

inline
unsigned const* bsearch_unsigned(unsigned const key[static 1],
size_t nmeb, unsigned const base[nmeb]) {
return bsearch (key, base, nmeb, sizeof base[0], compare_unsigned);
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|inline \
‘void gsort_unsigned(size_t nmeb, unsigned base[nmeb]) {
‘ gsort (base, nmeb, sizeof base[0], compare_unsigned);

|

|}

Here, bsearch (binary search) searches for an element that compares equal to key [ 0]
and returns it or returns a null pointer if no such element is found. It supposes that ar-
ray base is already sorted consistently to the ordering that is given by the comparison
function. This assumption helps speed up the search. Although this is not explicitly
specified in the C standard, you can expect that a call to bsearch will never make
more than [log2(n)] calls to compar.

If bsearch finds an array element that is equal to xkey, it returns the pointer
to this element. Note that this, if used like that, drills a hole in C’s type system, since
this returns an unqualified pointer to an element whose effective type might be const -
qualified. Use with care. In our example, we simply convert the return value to unsigned
const*, such that we will never even see an unqualified pointer at the call side of
bsearch_unsigned. Since C23 bsearch has in fact been upgraded to a type-
generic macro bsearch of the same name, see 18.1.7, which circumvents this flaw.

The name gsort is derived from the quick sort algorithm. The standard doesn’t
impose the choice of the sorting algorithm, but the expected number of comparison
calls should be of the magnitude of nlogg(n), just like quick sort. There are no guar-
antees for upper bounds; you may assume that its worst-case complexity is at most
quadratic, O(n?).

Whereas there is a catch-all pointer type, void»* that can be used as a generic
pointer to object types, no such generic type or implicit conversion exists for function
pointers.

Takeaway 11.4 #2  Function pointers must be used with their exact type.

Such a strict rule is necessary because the calling conventions for functions with
different prototypes may be quite differentﬁ and the pointer itself does not keep track
of any of this.

The following function has a subtle problem because the types of the parameters

are different than what we expect from a comparison function:

/* Another invalid example for an int comparison function x/
int compare_int (int constx a, int constx b) {

if (*xa < *b) return -1;

else if (xa > xb) return +1;

else return O;

When you try to use this function with gsort, your compiler should complain that
the function has the wrong type. The variant that we gave earlier using intermediate
void const * parameters should be almost as efficient as this invalid example, but it
also can be guaranteed to be correct on all C platforms.

Calling functions and function pointers with the (.. .) operator has rules similar
to those for arrays and pointers and the [ . . .] operator:

double f (double a);
// Equivalent calls to f, steps in the abstract state machine

24The platform application binary interface (ABI) may, for example, pass floating points in special hard-
ware registers.
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‘ £(3); // Decay — call

‘ (&f) (3); // Address of — call

‘ (x£) (3); // Decay — dereference — decay — call

‘ (x&f) (3); // Address of — dereference — decay — call

‘ (&xf) (3); // Decay — dereference — address of — call

L |

Takeaway 11.4 #3  The function call operator (--- ) applies to function pointers.

So, technically, in terms of the abstract state machine, the pointer decay is always
performed, and the function is called via a function pointer. The first, “natural” call has
a hidden evaluation of the £ identifier that results in the function pointer.

Given all this, we can use function pointers almost like functions:

// In a header

typedef int logger_function(char constx, ...);
extern logger_functionx logger;

enum logs { log_pri, log_ign, log_ver, log_num };

This declares a global variable 1ogger that will point to a function that prints out
logging information. Using a function pointer will allow the user of this module to
choose a particular function dynamically:

// In a .c file (TU)

extern int logger_verbose (char constx, ...);
static
int logger_ignore (char constx, ...) {

return 0;
}

logger_functionx logger = logger_ignore;

static

logger_function* loggers = ({
[log_pri] = printf,
[log_ign] = logger_ignore,
[log_ver] = logger_verbose,

Vi

Here, we are defining tools that implement this approach. In particular, function point-
ers can be used as a base type for arrays (here, 1oggers). Observe that we use two ex-
ternal functions (print £ and logger_verbose) and one static function (logger_
ignore) for the array initialization; the storage class is not part of the function inter-
face.

The 1ogger variable can be assigned just like any other pointer type. Somewhere
at startup, we can have

|
‘if (LOGGER < log_num) logger = loggers[LOGGER];
!

Then this function pointer can be used anywhere to call the corresponding function:

| |
‘logger("Douweueveruseeulineu\%luuofufileu\%s?", _ LINE +0UL, _ FILE_);
L |

This call uses the special macros __LINE___ and __FILE__ for the line number
and the name of the source file. We will discuss these in more detail in subsection 17.3.

When using pointers to functions, you should always be aware that doing so intro-
duces an indirection to the function call. The compiler first has to fetch the contents of
logger and can only then call the function at the address it found there. This has a
certain overhead and should be avoided in time-critical code.
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CHALLENGE 13 (Generic derivative). Can you extend the real and complex derivatives (chal-
lenges 2 and 5) such that they receive the function F and the value x as a parameter?

Can you use the generic real derivatives to implement Newton’s method for finding roots?

Can you find the real zeros of polynomials?

Can you find the complex zeros of polynomials?

CHALLENGE 14 (Generic sorting). Can you extend your sorting algorithms (challenge 1) to
other sort keys?

Can you condense your functions for different sort keys to functions that have the same signature
as gsort—that is, receive generic pointers to data, size information, and a comparison function
as parameters?

Can you extend the performance comparison of your sorting algorithms (challenge 10) to the C
library function gsort?
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Summary

Pointers can refer to objects and functions.

Pointers are not arrays but refer to arrays.

Array parameters of functions are automatically rewritten as object pointers.
Function parameters of functions are automatically rewritten as function point-
ers.

Function pointer types must match exactly when they are assigned or called.
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12. The C memory model

This section covers

e Understanding object representations
e Working with untyped pointers and casts
e Restricting object access with effective types and alignment

Pointers present us with a certain abstraction of the environment and state in which
our program is executed, the C memory model. We may apply the unary operator & to
(almost) all object52_5 to retrieve their address and use it to inspect and change the state
of our execution.

This access to objects via pointers is still an abstraction because, in C, no distinction
of the “real” location of an object is made. It could reside in your computer’s RAM, on
a disk file, or correspond to an IO port of a temperature sensor on the moon; you
shouldn’t care. C is supposed to do the right thing, regardless.

And, indeed, on modern operating systems, all you get via pointers is something
called virtual memory, basically a fiction that maps the address space of your process to
physical memory addresses of your machine. All this was invented to ensure certain
properties of your program executions:

portable: You do not have to care about physical memory addresses on a specific ma-
chine.

safe: Reading or writing virtual memory that your process does not own will affect
neither your operating system nor any other process.

The only thing C must care about is the type of the object a pointer addresses. Each
pointer type is derived from another type, its base type, and each such derived type is
a distinct new type.

Takeaway 12 #1  Pointer types with distinct base types are distinct.

In addition to providing a virtual view of physical memory, the memory model
also simplifies the view of objects themselves. It makes the assumption that each object
is a collection of bytes, the object representation (subsection E);ﬁ see figure 12 for a
schematic view. A convenient tool to inspect that object representation is unions (sub-
section 12.2). Giving direct access to the object representation (subsection 12.3) allows
us to do some fine-tuning. On the other hand, it also opens the door to unwanted or
conscious manipulations of the state of the abstract machine: tools for that are untyped
pointers (subsection 12.4) and casts (subsection 12.5). Effective types (subsection 12.6)
and alignment (subsection 12.7) describe formal limits and platform constraints for

such manipulations.

12.1. Auniform memory model. Even though generally all objects are typed, the
memory model makes another simplification: all objects are an assemblage of bytes*.
The sizeof operator that we introduced in the context of arrays measures the size
of an object in terms of the bytes that it uses. There are three distinct types that, by
definition, use exactly 1 byte of memory: the character types char, unsigned char,
and signed char.

Takeaway 12.1 #1 sizeof (char) is 1 by definition.

250111y objects that are declared with keyword register don’t have an address; see subsection 13.2.2
in level 2

26The object representation is related to but not the same thing as the binary representation that we saw in
subsection 5.1.8.
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Ficure 12.1. The different levels of the value-memory model for an
int32_t. Example of a platform that maps this type to a 32-bit
signed int and uses a little-endian object representation.

Not only can all objects be “accounted” in size as character types on a lower level,
they can even be inspected and manipulated as if they were arrays of such character
types. A little later, we will see how this can be achieved, but for the moment we will
just note the following:

Takeaway 12.1 #2  Every object A can be viewed as unsigned char [sizeof A].
Takeaway 12.1 #3  Pointers to character types are special.

Unfortunately, the types that are used to compose all other object types are derived
from ehar, the type we looked at for the characters of strings. This is merely a historical
accident, and you shouldn’t read too much into it. In particular, you should clearly
distinguish the two different use cases.

Takeaway 12.1 #4  Use the type char for character and string data.
Takeaway 12.1 #5  Use the type unsigned char as the atom of all object types.

The type signed char is of much less importance than the two others.
As we have seen, the sizeof operator counts the size of an object in terms of how
many unsigned chars it occupies.

Takeaway 12.1 #6 The sizeof operator can be applied to objects and object types.

From the previous discussion, we can also distinguish two syntactic variants for
sizeof: with and without parentheses. Whereas the syntax for an application to ob-
jects can have both forms, the syntax for types needs parentheses.

Takeaway 12.1 #7  The size of all objects of type T is given by sizeof (T).
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12.2. Unions. Let us now look at a way to examine the individual bytes of objects.
Our preferred tool for this is the union. These are similar in declaration to struct
but have different semantics:

endianness ¢

typedef union unsignedInspect unsignedInspect;
union unsignedInspect {
unsigned val;
unsigned char bytes[sizeof (unsigned) ];
}i
unsignedInspect twofold = { .val = OxAABBCCDD, };

The difference here is that such a union doesn’t collect objects of different types
into one bigger object, but rather overlays an object with several different type interpre-
tations. That way, it is the perfect tool to inspect the individual bytes of an object of
another type.

Let us first try to figure out what values we would expect for the individual bytes. In
a slight abuse of language, let us speak of the different parts of an unsigned number that
correspond to the bytes as representation digits. Since we view the bytes as being of type
unsigned char, they can have values O ...UCHAR_MAYX, inclusive, and thus we inter-
pret the number as written with a base of UCHAR_MAX+1. In the example, on my ma-
chine, a value of type unsigned can be expressed with sizeof (unsigned) == 4
such representation digits, and I chose the values 0xAA, 0xBB, 0xCC, and 0xDD for
the highest- to lowest-order representation digit. The complete unsigned value can
be computed using the following expression, where CHAR_BIT is the number of bits
in a character type:

( (0XAA << (CHAR_BIT=*3))
| (OxBB << (CHAR BITx*2))
| (0xCC << CHAR BIT)
| 0xDD)

With the union defined earlier, we have two different facets to look at the same

twofoldobject: twofold.val presentsitasbeinganunsigned,and twofold.bytes

presents it as an array of unsigned char. Since we chose the length of twofold.bytes
to be exactly the size of twofold.val, it represents exactly its bytes and thus gives us
a way to inspect the object representation® of an unsigned value using all its repre-
sentation digits:

endianness.c

printf ("value_is_ 0x%.08X\n", twofold.val);
for (size_t i = 0; i1 < sizeof twofold.bytes; ++1i)
printf ("byte[%zu] : 0x%.02hhX\n", i, twofold.bytes[i]);

On my computer, I receive a result as shown hcrc:2_7

Terminal

~/build/modernC% code/endianness
value is OxAABBCCDD

byte[0]: 0xDD

byte[1l]: 0xCC

byte[2]: 0xBB

byte[3]: 0xAA

27Test the code on your own machine.
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For my machine, we see that the output has the low-order representation digits of
the integer first, then the next-lower order digits, and so on. At the end, the highest-
order digits are printed. So the in-memory representation of such an integer on my
machine has the low-order representation digits before the high-order ones.

This is not normalized by the standard but is an implementation-defined behavior.

Takeaway 12.2 #1  The in-memory order of the representation digits of an arithmetic type
is implementation defined.

That is, a platform provider might decide to provide a storage order that has the
highest-order digits first and then print lower-order digits one by one. The storage
order, the endiannessC, as given for my machine, is called little-endian®. A system
that has high-order representation digits first is called big-endian®.?® Both orders are
commonly used by modern processor types. Some processors are even able to switch
between the two orders on the fly.

Since C28, the header <stdbit .h> has macros that provide the endianess that
the compiler implements:

platform endianess ‘ ___STDC_ENDIAN NATIVE_

little __STDC_ENDIAN LITTLE
big __ STDC_ENDIAN BIG
other different from above

The previous output also shows another implementation-defined behavior: I used
the feature of my platform that one representation digit can be printed nicely by using
two hexadecimal digits. In other words, I assumed that UCHAR_MAX+1 is 256 and
that the number of value bits in an unsigned char, CHAR BIT, is 8. Again, this is
implementation-defined behavior. Although the vast majority of platforms have these
properties,ﬁ there are still some around that have wider character types.

Takeaway 12.2 #2  On most architectures, CHAR_BITis 8 and UCHAR MAXis 255.

In the example, we have investigated the in-memory representation of the simplest
arithmetic base types, unsigned integers. Other base types have in-memory representa-
tions that are more complicated: signed integer types have to encode the sign; floating-
point types have to encode the sign, mantissa, and exponent; and pointer types may
follow any internal convention that fits the underlying architecture.[Fxs 30](Exs 311[Exs 32]

12.3. Memory and state. The value of all objects constitutes the state of the ab-
stract state machine and thus the state of a particular execution. C’s memory model
provides something like a unique location for (almost) all objects through the & opera-
tor, and that location can be accessed and modified from different parts of the program
through pointers.

Doing so makes the determination of the abstract state of an execution much more
difficult, if not impossible in many cases:

1 \ double blub (double const* a, doublex b);

2 |

3 ‘ int main (void) {

4 \ double c = 35;

5 | double d = 3.5;
28The names are derived from the fact that the big or small “end” of a number is stored first.
291 particular, all POSIX systems.

[Exs 3O]Design a similar union type to investigate the bytes of a pointer type, such as doublex.

[Exs 81With such a union, investigate the addresses of two consecutive elements of an array.
[Exs 32]Compalrc the addresses of the same variable between different executions.
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‘ printf ("blub_is_%g\n", blub(&c, &d));

‘ printf ("after _blub_the_sum_is_%g\n", c + d); ‘
|} |
! |

Here, we (as well as the compiler) only see a declaration of function b1ub, with no
definition. So we cannot conclude much about what that function does to the objects
its arguments point to. In particular, we don’t know if the variable d is modified, so
the sum ¢ + d could be anything. The program really has to inspect the object d in
memory to find out what the values after the call to b1ub are.

Now let us look at such a function that receives two pointer arguments:

double blub (double constx a, doublex b) ({
double myA = xa;
*b = 2+myA;
return +a; // May be myA or 2smyA

Such a function can operate under two different assumptions. First, if called with
two distinct addresses as arguments, *a will be unchanged, and the return value will be
the same as myA. But if both argument are the same, such as if the callisb1lub (&c, &c),
the assignment to *b will change *a, too.

The phenomenon of accessing the same object through different pointers is called
aliasing®; it is a common cause for missed optimization. In both cases, either that
two pointers always alias or that they never alias, the abstract state of an execution is
much reduced, and the optimizer often can take much advantage of that knowledge.
Therefore, C forcibly restricts the possible aliasing to pointers of the same type.

Takeaway 12.3 #1 (Aliasing)  With the exclusion of character types, only pointers of the
same base type may alias.

To see this rule in effect, consider a slight modification of our previous example:

size_t blob(size_t constx a, doublex b) {
size_t myA = *a;
*b = 2xmyA;
return xa; // Must be myA

Because here the two parameters have different types, C assumes that they don’t ad-
dress the same object. In fact, it would be an error to call that functionasblob (&e, &e)
(for some variable e), since this would never match the prototype of blob. So at the
return statement, we can be sure that the object xa hasn’t changed and that we already
hold the needed value in variable myA.

There are ways to fool the compiler and to call such a function with a pointer that
addresses the same object. We will see some of these cheats later. Don’t do this; it is
a road to much grief and despair. If you do so, the behavior of the program becomes
undefined, so you have to guarantee (prove!) that no aliasing takes place.

On the contrary, we should try to write our programs so they protect our variables
from ever being aliased, and there is an easy way to achieve that.

Takeaway 12.3 #2 Avoid the & operator.

Depending on the properties of a given variable, the compiler may see that the
address of the variable is never taken, and thus the variable can’t alias at all. In sub-
section 13.2, we will see which properties of a variable or object may influence such
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decisions and how the register keyword can protect us from taking addresses inad-
vertently. Later, in subsection 16.2, we will see how the restrict keyword allows
us to specify aliasing properties of pointer arguments, even if they have the same base

type.

12.4. Pointers to unspecific objects. As we have seen, the object representation
provides a view of an object X as an array unsigned char [sizeof X]. The starting
address of that array (of type unsigned charx) provides access to memory that is
stripped of the original type information.

C has invented a powerful tool to handle such pointers more generically. These
are pointers to a sort of non-type, void.

Takeaway 12.4 #1 Any object pointer converts to and from void=.

Note that this only talks about object pointers, not function pointers. Think of a
voidx pointer that holds the address of an existing object as a pointer into a storage
instance that holds the object; see figure 12 at page 184. As an analogy for such a hier-
archy, you could think of entries in a phone book: a person’s name corresponds to the
identifier that refers to an object; their categorization with a “mobile,” “home,” or “work”
entry corresponds to a type; and their phone number itself is some sort of address (in
which, by itself, you typically are not interested). But then, even the phone number
abstracts away from the specific information of where the other phone is located (which
would be the storage instance underneath the object) or specific information about the
other phone itself (for example, if it is on a landline or the mobile network) and what
the network has to do to actually connect you to the person at the other end.

Takeaway 12.4 #2  An object has storage, type, and value.

Not only is the conversion to void«* well defined, but it also is guaranteed to behave
well with respect to the pointer value.

Takeaway 12.4 #3  Converting an object pointer to voidx and then back to the same type
is the identity operation.

So, the only thing that we lose when converting to void=« is the type information;
the value remains intact.

Takeaway 12.4 #4 (avoid?*) Avoid voidx.

It completely removes any type information that is associated with an address.
Avoid it whenever you can. The other way around is much less critical—in particu-
lar, if you have a C library call that returns a void-.

void as a type by itself shouldn’t be used for variable declarations since it won’t
lead to an object with which we can do anything.

12.5. Explicit conversions. A convenient way to look at the object representation
of object X would be to somehow convert a pointer to X to a pointer of type unsigned
charx*:

double X;
unsigned charx Xp = &X; // error: implicit conversion not allowed

Fortunately, such an implicit conversion of a double* to unsigned charx is not
allowed. We would have to make this conversion somehow explicit.

We already have seen that in many places, a value of a certain type is implicitly
converted to a value of a different type (subsection 5.4), and that narrow integer types
are first converted to int before any operation. In view of that, narrow types only make
sense in very special circumstances:
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e You have to save memory. You need to use a really big array of small values.
Really big here means potentially millions or billions. In such a situation,
storing these values may gain you something.

e You use char for characters and strings. But then you wouldn’t do arithmetic
with them.

e You use unsigned char to inspect the bytes of an object. But then, again,
you wouldn’t do arithmetic with them.

Conversions of pointer types are more delicate because they can change the type inter-
pretation of an object. Only two forms of implicit conversions are permitted for data
pointers: conversions from and to void~* and conversions that add a qualifier to the
target type. Let’s look at some examples:

float £ = 37.0; // Conversion: to float

double a = f; // Conversion: back to double
floatx pf = &f; // Exact type

float constx pdc = &f; // Conversion: adding a qualifier
void+ pv = &f; // Conversion: pointer to voidx
floatx pfv = pv; // Conversion: pointer from voids
float+ pd = &a; // Error: incompatible pointer type
doublex pdv = pv; // Error if used

g vk 0N —

The first two conversions that use void« (pv and pfv) are already a bit tricky: we
convert a pointer back and forth, but we watch that the target type of pfv is the same
as £ so everything works out fine.

Then comes the erroneous part. In the initialization of pd, the compiler can pro-
tect us from a severe fault. Assigning a pointer to a type that has a different size and
interpretation can and will lead to serious damage. Any conforming compiler must give
a diagnosis for this line. By now, you should understand well that your code should
not produce compiler warnings (takeaway 1.2 #3), and you know that you should not
continue until you have repaired such an error.

The last line is worse: it has an error, but that error is syntactically correct. The
reason this error might go undetected is that our first conversion for pv has stripped the
pointer from all type information. So, in general, the compiler can’t know what type of
object is behind the pointer.

In addition to the implicit conversions that we have seen until now, C also allows us
to convert explicitly using casts® E With a cast, you are telling the compiler that you
know better than it does and that the type of the object behind the pointer is not what
it thinks, so it should shut up. In most use cases that I have come across in real life, the
compiler was right, and the programmer was wrong. Even experienced programmers
tend to abuse casts to hide poor design decisions concerning types.

Takeaway 12.5 #1  Don’t use casts.

They deprive you of precious information, and if you choose your types carefully,
you will only need them for very special occasions.

One such occasion is when you want to inspect the contents of an object on the byte
level. Constructing a union around an object, as we saw in subsection 12.2, might not
always be possible (or may be too complicated), so here we can go for a cast:

endianness c

I - |
15 unsigned val = OxAABBCCDD; \
16 | unsigned charx valp = (unsigned charx)s&val; \
17 ‘ for (size t i = 0; i < sizeof val; ++i) ‘

834 cast of an expression X to type T has the form (T) X. Think of it like “t0 cast a spell.”
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18 ‘ printf ("byte[%zu] : 0x%.02hhX\n", i, valpl[il);

In that direction (from “pointer to object” to a “pointer to character type”), a cast is
mostly harmless.ﬁ

12.6. Effective types. To cope with different views of the same object that point-
ers may provide, C has introduced the concept of effective types. It heavily restricts how
an object can be accessed.

Takeaway 12.6 #1 (Effective type)  Objects must be accessed through their effective type
or through a pointer to a character type.

Because the effective type of a union variable is the union type and none of the
member types, the rules for union members can be relaxed.

Takeaway 12.6 #2 _Any member of an object that has an effective union type can be accessed
at any time, provided the byte representation amounts to a valid value of the
access type.

For all objects we have seen so far, it is easy to determine the effective type.

Takeaway 12.6 #3  The effective type of a variable or compound literal is the type of its
declaration.

Later, we will see another category of objects that are a bit more involved.
Note that this rule has no exceptions, and we can’t change the type of such a variable
or compound literal.

Takeaway 12.6 #4  Variables and compound literals must be accessed through their declared
type or through a pointer to a character type.

Also, observe the asymmetry in all of this for character types. Any object can be
seen as being composed of unsigned char, but no array of unsigned chars can
be used through another type:

unsigned char A[sizeof (unsigned)] = { 9 };
// Valid but useless, as most casts are
unsigned p = (unsignedx)A;

// Error: access with a type that is neither the effective type nor a
// character type
printf ("value_\%u\n", «*p);

Here, the access *p is an error, and the program state is undefined afterward. This
is in strong contrast to our dealings with union earlier: see subsection 12.2, where we
actually could view a byte sequences as an array of unsigned char or unsigned.

The reasons for such a strict rule are multiple. The very first motivation for intro-
ducing effective types in the C standard was to deal with aliasing, as we saw in subsec-
tion 12.8. In fact, the aliasing rule (takeaway 12.3 #1) is derived from the effective type
rule (takeaway 12.6 #1). As long as there is no union involved, the compiler knows
that we cannot access a double through a size_t«, and so it may assume that the
objects are different.

34Note, though, that even a recent compiler at the time of this writing gets that particular code snippet
wrong and is convinced that the byte-wise access goes to uninitialized data. Avoid casts as far as you may.
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12.7. Alignment. The inverse direction of pointer conversions (from “pointer to
character type” to “pointer to object”) is not harmless at all and not only because of pos-
sible aliasing. This has to do with another property of C’s memory model: alignmentC .
Objects of most noncharacter types can’t start at any arbitrary byte position; they usu-
ally start at a word boundary®. The alignment of a type then describes the possible
byte positions at which an object of that type can start.

If we force some data to a false alignment, really bad things can happen. To see
that, have a look at the following code:

crash.c

int main (void) {
enable_alignment_check() ;
/* An overlay of complex values and bytes. */
union {
cdbl val[2];
unsigned char buf[sizeof (cdbl[2])];
} toocomplex = {
.val = { 0.5 + 0.5«I, 0.75 + 0.75*I, },
}i
printf ("size/alignment: %zu/%$zu\n",
sizeof (cdbl), alignof (cdbl));
/+ Run over all offsets, and crash on misalignment. x/
for (size_t offset = sizeof (cdbl); offset; offset /=2) {
printf ("offset\t%zu:\t", offset);
fflush (stdout) ;
cdblx bp = (cdblx) (&toocomplex.buf[offset]);
printf ("$g\t+%gI\t", creal (xbp), cimag (xbp));
fflush (stdout) ;
*bp *= xbp;
printf ("$g\t+%gl", creal (xbp), cimag(xbp));
fpute (' \n’, stdout);

// align!

This starts with a declaration of a union similar to what we saw earlier. Again, we
have a data object (of type complex double [2] in this case) that we overlay with an
array of unsigned char. The obvious intent of this program is to print one output
line per loop execution, each prefixed with the value of of fset. Other than the fact
that this part is a bit more complex, at first glance there is no major problem with it.
But if I execute this program on my machine, I get

Terminal

~/.../modernC/code (master % u=) 14:45 <516>$ ./crash

size/alignment: 16/8
offset 16: 0.75 +0.75I 0 +1.1251

3 offset 8: 0.5 +0I 0.25 +0I
4 offset 4: Bus error
The program crashes with an error indicated as a bus error®, which is a shortcut
for something like “data bus alignment error.” The real problem line is
T - (‘erh,(‘ !
26 | cdblx bp = (cdblx) (&toocomplex.buf[offset]); // align!

On the right, we see a pointer cast: an unsigned char« is converted to a complex
doublex. With the for loop around it, this cast is performed for byte offsets of fset
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from the beginning of toocomplex. These are powers of 2: 16, 8, 4, 2, and 1. As
you can see in the previous output, it seems that complex double still works well for
alignments of half of its size, but with an alignment of one fourth, the program crashes.

Some architectures are more tolerant of misalignment than others, and we might
have to force the system to error out on such a condition. We use the following function
at the beginning to force crashing:

crash.c

enable_alignment_check: enable alignment check for i386 processors

Intel’s i386 processor family is quite tolerant in accepting misalignment of data.
This can lead to irritating bugs when ported to other architectures that are not as
tolerant.

This function enables a check for this problem also for this family or processors,
such that you can be sure to detect this problem early.

I found that code on Ygdrasil’s blog: http://orchistro.tistory.com/206

void enable_alignment_check (void) ;

If you are interested in portable code (and if you are still here, you probably are),
early errors in the development phase are really helpful.ﬁ So, consider crashing a
feature. See the blog entry mentioned in crash. h for an interesting discussion of this
topic.

In the previous code example, we also see a new operator, alignof£, that pro-
vides us with the alignment of a specific type. You will rarely find the occasion to use
it in real live code. Prior to C23, this operator was spelled _Alignof£; if you are con-
cerned about legacy code or platforms, you should include <stdalign.h> to do the
replacement.

Another keyword can be used to force allocation at a specified alignment: alignas
(since C23; previously _Alignas). Its argument can be either a type or expression. It
can be useful when you know that your platform can perform certain operations more
efficiently if the data is aligned in a certain way.

For example, to force alignment of a complex variable to its size and not half the
size, as we saw earlier, you could use

‘ alignas (sizeof (complex double)) complex double z;
!

Or, if you know that your platform has efficient vector instructions for £1loat [4] ar-
rays:

\ alignas (sizeof (float[4])) float fvec[4];
L

These operators don’t help against the effective type rule (takeaway 12.6 #1). Even
with

|
‘ alignas (unsigned) unsigned char A[sizeof (unsigned)] = { 9 };
!

the example at the end of section 12.6 remains invalid.

85For the code used inside that function, please consult the source code of crash.h to inspect it.
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Summary

The memory and object model have several layers of abstraction: physical
memory, virtual memory, storage instances, object representation, and binary
representation.

e Each object can be seen as an array of unsigned char.

e unions serve to overlay different object types over the same object represen-
tation.

Memory can be aligned differently according to the need for a specific data
type. In particular, not all arrays of unsigned char can be used to represent
any object type.
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13. Storage

This section covers

e Creating objects with dynamic allocation
e The rules of storage and initialization

e Understanding object lifetime

e Handling automatic storage

So far, most objects we have handled in our programs have been variables—that is,
objects that are declared in a regular declaration with a specific type and an identifier
that refers to the object. Sometimes they were defined at a different place in the code
than they were declared, but even such a definition referred to them with a type and
identifier. Another category of objects that we have seen less often is specified with a
type but not with an identifier: compound literals, as introduced in subsection 5.6.4.

All such objects, variables or compound literals, have a lifetime® that depends on
the syntactical structure of the program. They have an object lifetime and identifier
visibility that either spans the whole program execution (global variables, global literals,
and variables declared with static) or are bound to a block of statements inside a
function.®

We also have seen that for certain objects, it is important to distinguish different
instances when we declare a variable in a recursive function. Each call in a hierarchy
of recursive calls has its own instance of such a variable. Therefore, it is convenient to
distinguish another entity that is not exactly the same as an object, the storage instance.

In this section, we will handle another mechanism to create objects called dynamic
allocation (subsection 18.1). In fact, this mechanism creates storage instances that are
only seen as byte arrays and do not have any interpretation as objects. They only acquire
a type once we store something.

With this, we have an almost complete picture of the different possibilities, and
thus we can discuss the different rules for storage duration, object lifetime, and identifier
visibility (subsection 13.2). We will also take a full dive into the rules for initialization
(subsection 18.4), as these differ significantly for differently created objects.

Additionally, we propose two digressions. The first is a more detailed view of ob-
ject lifetime, which allows us to access objects at surprising points in the C code (sub-
section 13.3). The second provides a glimpse into a realization of the memory model
for a concrete architecture (subsection 18.5) and, in particular, how automatic storage

may be handled on your particular machine.

13.1. malloc and friends. For programs that have to handle growing collections
of data, the types of objects that we have seen so far are too restrictive. To handle
varying user input, web queries, large interaction graphs and other irregular data, big
matrices, and audio streams, it is convenient to reclaim storage instances for objects on
the fly and then release them once they are not needed anymore. Such a scheme is
called dynamic allocation® or sometimes just allocation for short.

The following set of functions, available with <std1lib.h>, has been designed to

provide such an interface to allocated storage:

#include <stdlib.h>

voidx malloc (size_t size);

void free (voidx ptr);

voidx calloc(size_t nmemb, size t size);

voidx realloc (voidx ptr, size_t size);

voidx aligned alloc(size_t alignment, size_t size);

3671, fact, this is a bit of a simplification; we will see the gory details shortly.
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The first two, malloc (memory allocate) and £ree, are by far the most prominent. As
the names indicate, malloc creates a storage instance for us on the fly, and £ree then
annihilates it. The three other functions are specialized versions of malloc: calloc
(clear allocate) sets all bits of the new storage to 0, realloc grows or shrinks storage,
and aligned_alloc ensures nondefault alignment.

Takeaway 13.1 #1 = Only use the allocation functions with a size strictly greater than zero.

Before discussing these functions in more detail, let us look into two functions that

C23 imported from POSIX, which we already briefly discussed:

#include <string.h>
charx strdup( char const s[static 1]);
charx strndup (char const s[static 1], size_ t n);

They are specialized to handle character strings by conveniently combining alloca-
tion and copy operations. strdup can be seen as if it was defined as follows:

char xstrdup (char const s[static 1]) {
// +1 for the O-termination
charx ret = malloc(strlen(s)+1);
return ret ? strcpy(ret, s) : nullptr;
}

Note that this supposes that s is not null and the input given by it is, in effect, a string.
Otherwise, the scan using st rlen would be erroneous.

Here, the call to the function malloc either allocates the requested storage space
and returns a pointer to it or, if no storage is available, returns a null pointer. This prop-
erty is taken into account so that the copy operation is only performed if the allocation
succeeds.

Takeaway 13.1 #2  Failed allocations result in a null pointer.

strndup is a bit less constrained than strdup. It only assumes that the buffer
pointed to by s either has a 0 value among the first n bytes or, otherwise, has at least
that size:

charx strndup (char const s[static 1], size_t n) {
char constx pos = memchr(s, 0, n);
n = pos ? (pos-s)+l : n;
charx ret = malloc(n);
if (ret) {
memcpy (ret, s, n-1);
ret [n-1] = 0;
}
return ret;

}

The buffer that is returned (if any) is always a string because a write of a 0 value to the
last byte is assured. So, whenever we know of a bound for the size of the string, we
should prefer that interface.

Takeaway 13.1 #3  Prefer the use of st rndup over st rdup.

The <stdlib.h> functions operate with void+—that is, with pointers for which  <stdlib.nh>
no type information is known. Being able to specify such a “non-type” for this series of
functions is probably the raison détre for the whole game with voidx* pointers. Using
that, they become universally applicable to all types. The following example allocates a

large storage for a vector of doubles, one element for each living person(F* 371;

[Exs 87]pont try this allocation; instead, compute the size that would be needed on your platform. Is allocating
such a vector feasible on your platform?
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size_t length = livingPeople();
doublex largeVec = malloc (length » sizeof xlargeVec);
for (size_t i = 0; i1 < length; ++i) {

largeVec[i] = 0.0;

free (largeVec) ;

Because malloc knows nothing about the later use or type of the object to be
stored, the size of the storage is specified in bytes. In the idiom given here, we have
specified the type information only once, as the pointer type for largeVec. By using
sizeof xlargeVec in the parameter for the malloc call, we ensure that we will
allocate the right number of bytes. Even if we change 1argevec later to have type
size_t~, the allocation will adapt.

Another idiom that we will often encounter strictly takes the size of the type of the
object that we want to create—an array of length elements of type double:

|
‘double* largeVec = malloc (sizeof (double[lengthl]));
!

We already have been haunted by the introduction of casts, which are explicit con-
versions. It is important to note that the call to malloe stands as is; the conversion
from voidx, the return type of malloc, to the target type is automatic and doesn’t
need any intervention.

Takeaway 13.1 #4  Don't cast the return of malloc and friends.

Not only is such a cast superfluous, but doing an explicit conversion can even be
counterproductive when we forget to include the header file <stdlib.h>: Older C

/+ If we forget to include stdlib.h, many compilers
still assume: x/
int malloc(); // Wrong function interface!
doublex largeVec = (voidx)malloc (sizeof (double[lengthl]));
I
int <——
|
voidx <-—-—

compilers suppose a return of int and trigger the wrong conversion from int to a
pointer type. I have seen many crashes and subtle bugs triggered by that error, partic-
ularly in beginners’ code whose authors have been following bad advice.

In the previous code, as a next step, we initialize the storage we just allocated
through assignment (here, all 0. 0). It is only with these assignments that the individual
elements of largeVec become “objects.” Such an assignment provides an effective
type and a value.

Takeaway 13.1 #5  Storage allocated through malloc is uninitialized and has no type.

13.1.1. A complete example with varying array size. Let us now look at an example
where using a dynamic array allocated with malloc brings us more flexibility than a
simple array variable. The following interface describes a circular buffer of double
values called circular:
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circular.h

circular: atype for a circular buffer for double values

This data structure allows to add double values in rear and to take them out in
front. Each such structure has a maximal amount of elements that can be stored in
it.

typedef struct circular circular;

circular.h

circular_append:

Append a new element with value value to the buffer c.

Returns: c if the new element could be appended, null otherwise.

circularx circular_append(circularx c, double value);

circular.h

circular_pop:

Remove the oldest element from ¢ and return its value.

Returns: the removed element if it exists, 0. 0 otherwise.

double circular_pop (circular* c);

The idea is that starting with 0 elements, new elements can be appended to the
buffer or dropped from the front, as long as the number of elements that are stored
doesn’t exceed a certain limit. The individual elements stored in the buffer can be
accessed with the following function:

circular.h

circular_element:

Return a pointer to position pos in buffer c.

Returns: a pointer to element pos of the buffer, null otherwise.

doublex circular_element (circular constx c, size_t pos);

Since our type circular will need to allocate and deallocate space for the circular
buffer, we will need to provide consistent functions for initialization and destruction of
instances of that type. This functionality is provided by two pairs of functions. The
first pair is applied to existing storage. The pair receives a pointer to the structure and
ensures that space for the data member is allocated or freed:

circular.h
circular_init:
Initialize a circular buffer ¢ with maximally cap elements.
Only use this function on an uninitialized buffer.

Each buffer that is initialized with this function must be destroyed with a call to
circular_destroy.

circular* circular_init (circularx c, size_t cap);
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circular.h

circular_destroy:

Destroy circular buffer c.

¢ must have been initialized with a call to circular_init

void circular_destroy(circular* c);

The second pair additionally allocates or deallocates the storage for the structure
itself. Since these two functions do not access any member of the structure directly,

they can be specified as inline:

circular.h

circular_new:
Allocate and initialize a circular buffer with maximally len elements.
Each buffer that is allocated with this function must be deleted with a call to

circular_delete.

[ [nodiscard ("pointer _to _allocated data_dropped")]]
[[__gnu__::__malloc_ , _ _gnu_free__ (circular_delete)]]
inline

circularx circular_new(size_t len) {

return circular_init (malloc (sizeof (circular)), len);

circular.h
circular_delete:

Delete circular buffer c.

¢ must have been allocated with a call to circular_new

inline

void circular_delete (circular* c) {
circular_destroy(c);
free(c);

If we used regular array variables, the maximum number of elements we could store
in a circular would be fixed once we created such an object. We want to be more
flexible so this limit can be raised or lowered by means of the circular_resize
function and the number of elements can be queried with circular_getlength:

circular.h
circular_resize:

Resize to capacity cap.

[ [nodiscard ("returned _pointer replaces_function_argument")]]
size_t cap);

circularx circular_resize(circularx c,




20
21
22
23
24
25

13. STORAGE 199

circular.h

circular_getlength:

Return the number of elements stored.

size_t circular_getlength(circular constx* c);

The functions circular newand circular_ resize use an attribute that we
have not seen before, [ [nodiscard] ]. It indicates, with an optional additional mes-
sage, that the return value for the function should not be ignored; if we do so, the com-
piler will issue a warning. This is particularly important for our use case: the pointer
that we pass to a function call will, in general, be invalid when the function returns, and
we’d have to use the possibly new pointer value that we receive in return.

Additionally, circular_newuses [[__gnu__::__malloc__]], agnu spe-
cific attribute which indicates that the return value of this function provides a pointer to
data that has not been seen before (the first variant) and that the function used to delete
the data should be circular_delete (second variant).

With the function circular_element, the type behaves like an array of double
s. Calling it with a position within the current length, we obtain the address of the
element stored in that position.

Before C23 and in the previous revision of this book, we had the definition of the
structure hidden inside the . c file, so users could only use the functions we provide as
an access. Nowadays, we have the [ [deprecated] ] attribute to mark all members
as deprecated so we can place even the definition of the structure in a header; we will
see in the following discussion how that aspect of the structure works.

N circular.h
struct circular {
size_t start [[deprecated("privat")]]; /* First element */
size t len [ [deprecated ("privat")]]; /+ Number of elements=*/
size_t cap [ [deprecated ("privat")]]; /x Maximum capacity =/
doublex* tab [ [deprecated ("privat")]1; /x Data array */
}i

The idea is that the pointer member tab will always point to an array object of
length cap. Ata certain point in time, the buffered elements will start at start, and the
number of elements stored in the buffer is maintained in member 1en. The position
inside the table tab is computed modulo cap.

The following table symbolizes one instance of this circular data structure, with
cap=10, start=2,and len=4.

Table index | 0 1 2 3 4 5 6 7 8 9
Buffer content | gah | gavih | 6.0 | 7.7 | 81.0| 99.0| gavhs | g | gavlh | gas
Buffer position 0 1 2 3

We see that the buffer contents (the four numbers 6.0, 7.7, 81.0, and 99.0)
are placed consecutively in the array object pointed to by tab.

The following scheme represents a circular buffer with the same four numbers, but
the storage space for the elements wraps around.

Table index | 0 1 2 3 4 5 6 7 8 9
Buffer content | 81.0| 99.0 | gl | gas | gas | gavlh | gas | gavh | 6.0 | 7.7
Buffer position | 2 3 0 1
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Initialization of such a data structure needs to call malloc to provide memory for
the tab member:

circular.c

[ [deprecated ("implementation") ]]
circularx circular_init (circular* c, size_t cap) {
if (c) {
if (cap) {
*Cc = (circular) {
.cap = cap,
.tab = malloc (sizeof (double[cap])),
bi
// Allocation failed.
if (!c->tab) c->cap = 0;
} else {
*Cc = (circular){ };

}

return c;

Observe that this function always checks the pointer parameter c for validity. Also,
it guarantees to initialize all other members to 0 by assigning compound literals in both
branches of the conditional.

The library function malloc can fail for different reasons. For example, the mem-
ory system might be exhausted from previous calls to it, or the reclaimed size for allo-
cation might just be too large. In general-purpose systems like the one you are probably
using for your learning experience, such a failure will be rare (unless voluntarily pro-
voked), but it still is a good habit to check for it.

Takeaway 13.1.1 #1 malloc indicates failure by returning a null pointer value.

Destruction of such an object is even simpler: we just have to check for the pointer,
and then we may free the tab member unconditionally:

circnlar ¢

[ [deprecated ("implementation") ]]
void circular_destroy(circular* c) {
if (c) {
free (c—>tab) ;
circular_init (¢, 0);

The library function £ree has the friendly property that it accepts a null parameter
and does nothing in that case.

The implementation of some of the other functions uses an internal function to
compute the “circular” aspect of the buffer. It is declared static, so it is only visible
for those functions and doesn’t pollute the identifier name space (takeaway 9.2 #3):
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[ [deprecated ("implementation") ]]
static size_t circular_getpos(circular const c[static 1], size_t
pos) {
if (c—>cap) {
pos += c—->start;
pos %= c—>cap;
}

return pos;

Obtaining a pointer to an element of the buffer is now quite simple:

circular.c

[ [deprecated ("implementation") ]]
double* circular_element (circular constx c, size_t pos) {
double*x ret = nullptr;
if (c) {
if (pos < c—->cap) {
pos = circular_getpos(c, pos);
ret = &c—->tab[pos];

}

return ret;

With all that information, you should now be able to implement all but one of
the function interfaces nicely.["* 381 The more difficult one is circular_resize. It
starts with some length calculations and then treats the cases in which the request would
enlarge or shrink the table. Here, we have the naming convention of using o (old) as
the first character of a variable name that refers to a feature before the change and n
(new) to its value afterward. The end of the function then uses a compound literal to
compose the new structure by using the values found during the case analysis:

circular.c

[ [nodiscard ("returned _pointer replaces_function_argument")]]
[ [deprecated ("implementation") ]]
circularx circular_resize(circularx c, size_t nlen) {
if (c) |
size t len = c—>len;
if (len > nlen) return nullptr;

size_t olen = c->cap;

if (nlen != olen) {
size_t ostart = circular_getpos(c, 0);
size_t nstart = ostart;

doublex otab = c->tab;
doublex ntab;
if (nlen > olen) {

[Exs 38Jyyrj(e implementations of the missing functions.
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circular.c

}

*Cc = (circular) {
.cap = nlen,
.start = nstart,
.len = len,

.tab = ntab,

}i

return c;

Let us now try to fill the gap in the previous code and look at the first case of

enlarging an object. The essential part is a call to realloc:

circular.c

ntab = realloc (c->tab, sizeof (double[nlen]));
if (!ntab) return nullptr;

For this call, realloc receives the pointer to the existing object and the new size

the relocation should have. It returns either a pointer to the new object with the desired
size or null. In the line immediately after, we check the latter case and terminate the
function if it is not possible to relocate the object.

The function realloc has interesting properties:

e If the original pointer is null, it allocates a buffer like malloc.
e The returned pointer may or may not be the same as the argument. It is left to

the discretion of the runtime system to determine whether the resizing can be
performed in place (for example, if there is space available behind the object
or whether a new object must be provided). Regardless, even if the returned
pointer is the same, the object is considered to be a new one (with the same
data). In particular, that means all pointers derived from the original become
invalid.
If the argument pointer and the returned one are distinct (that is, the object
has been copied), nothing has to be done (or even should be) with the previous
pointer. The old object is taken care of.
As far as possible, the existing content of the object is preserved:
— If the object is enlarged, the initial part of the object that corresponds to
the previous size is left intact.
— If the object shrank, the relocated object has content that corresponds to
the initial part before the call.
If null is returned (that is, the relocation request could not be fulfilled by the
runtime system), the old object is unchanged. So, nothing is lost.

Now that we know the newly received object has the size we want, we have to ensure
that t ab still represents a circular buffer. If previously the situation was, as in the first
table, earlier (the part that corresponds to the buffer elements is contiguous), we have
nothing to do. All data is nicely preserved.

If our circular buffer wraps around, we have to make some adjustments:
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circular.c

// non-empty, and there were already two separate chunks
if (ostart+len > olen) {

size_t ulen = olen - ostart;
size_t llen = len - ulen;
if (llen <= (nlen - olen)) {

/* Copy the lower one up after the old end. */
memcpy (ntab + olen, ntab,
llenxsizeof (double) ) ;

} else {
/* Move the upper one up to the new end. x/
nstart = nlen - ulen;

memmove (ntab + nstart, ntab + ostart,
ulen*sizeof (double)) ;

The following table illustrates the difference in the contents between before and
after the changes for the first subcase. The lower part finds enough space inside the part
that was added:

Table index | 0 1 2 3 4 5 6 7 8 9

Old content | 81.0| 99.0 | gavhh | gais | g | gavls | gap | g | 6.0 | 7.7

Old position | 2 3 0 1

New position | & b4 0 1 2 3

New content | S10Y| DOMY| gils | ghib | gails | g | b | gais | 6.0 | 7.7 | 81.0| 99.0 | b

Table index | O 1 2 3 4 5 6 7 8 9 10 | 11 12

The other case, where the lower part doesn’t fit into the newly allocated part, is
similar. This time, the upper half of the buffer is shifted toward the end of the new
table:

Table index | 0 1 2 3 4 5 6 7 8 9

Old content | 81.0| 99.0 | gah | gl | gas | g | gavh | gah | 6.0 | 7.7
Old position | 2 3 0 1
New position | 2 3 0 1
New content | 81.0| 99.0 | g&vh | gah | gab | gas | g | g | 6V | 6.0 | 7.7

Table index | 0 1 2 3 4 5 6 7 8 9 10

The handling of both cases shows a subtle difference, though. The first is handled
with memepy; the source and target elements of the copy operation can’t overlap, so
using memcpy is safe. In the other case, as we see in the example, the source and target
elements may overlap, and thus the use of the less-restrictive memmove function is
required.[Fxs 391

You may have noticed that the previous function definitions (but not the declara-
tions!) are also marked with a [ [deprecated] ] attribute. This has the effect that the
use of the members of the ciruclar structure within these functions is not diagnosed
as being deprecated; otherwise, the compilation of the file circular. c would issue a
lot of useless diagnostics. Code that uses just the header does not see the annotations
with [ [deprecated] ], so it will not diagnose the use of any of the functions but only

[Exs "w]lmplemenl shrinking of the table; it is important to reorganize the table contents before calling

realloc.
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if the members of the structure are accessed directly. By that, user code may have local
variables of the circular type:

#include "circular.h"

circular circ;
circular_init (&circ, 100);

circular_destroy (&circ);

This would not be possible if we had hidden the structure definition completely in the
. ¢ source file.

As of this writing (January 2024), not all compilers completely stick to the intent
of the C standard with respect to this attribute. Therefore, our source has a compiler-
specific #pragma at the beginning. This could be removed once the compilers in ques-
tion are fixed to follow the C standard more closely:

circular.c

oo

#if _ GNUC__ > 4 && __GNUC__ <= 14
9 |# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
10 | #endif

18.1.2. Ensuring consistency of dynamic allocations. As in both our code examples,
calls to allocation functions, suchasmalloc, realloc, and free, should always come
in pairs. This mustn’t necessarily be inside the same function, but in most cases, simple
counting of the occurrence of both should give the same number.

Takeaway 138.1.2 #1  For every allocation, there must be a free.

If not, this could indicate a memory leak®: aloss of allocated objects. This could
lead to resource exhaustion of your platform, showing itself in low performance or
random crashes.

Takeaway 13.1.2 #2  Forevery free, there must beamalloc, calloc, aligned _alloc,
or realloc.

But be aware that realloc can easily obfuscate simple counting of allocations
because if it is called with an existing object, it serves as deallocation (for the old object)
and allocation (for the new one) at the same time.

The memory-allocation system is meant to be simple, and thus £ree is only al-
lowed for pointers that have been allocated with malloc or that are null.

Takeaway 13.1.2 #3  Only call £ree with pointers as they are returned by malloc, calloc,
aligned _alloc, or realloc.

They must not

e Point to an object that has been allocated by other means (that is, a variable
or a compound literal)

e Have been freed yet

e Only point to a smaller part of the allocated object

Otherwise, your program will crash. Seriously, this will completely corrupt the memory
of your program execution, which is one of the worst types of crashes you can have. Be
careful.
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18.1.8. Flexible array members. In the previous discussion, the type circular
showed a way to combine a dynamically allocated array (the t ab member) with meta-
data (for example, the 1en member). C has another way to couple the information
about an array more directly to the array itself, called a flexible array member (FLA).
Such an array must be the last member of a structure and be defined as an incomplete
array:

typedef struct ua32 ua32;
struct ua32 {

size_t length;

uint32_t datal]; // flexible array member
bi

The idea is that the member data and 1ength are held consistent so for a pointer
value ap pointing to an object of that type, ap—>data always represents an array of
type uint32_t [ap->length]:

size_t len = 32;
size t size = offsetof (ua32, data) + sizeof (uint32[len]);
// Adjust if the size is too small
if (size < sizeof (ua32)) {
size = sizeof (ua32);
}
ua32+« ap = calloc(size, 1);
// Ensure that the length member is consistent with the object size.
ap—>length = len;

// Use ap->data mostly as an array
for (size_t i = 0; i < ap->length; i++) {
printf ("ap->datal[%$zu] _is_%w32u\n", i, ap->datali]);

}

Observe that the {lexible array member data may not sit at the very end after the
structure itself but may have an offset that locates it inside the structure. Therefore,
we always have to watch that we allocate enough storage so we can access the structure
itself.

Takeaway 13.1.3 #1 A structure object with a flexible array member must have enough stor-
age to access the structure as a whole.

Unfortunately, there are no standard tools that would allocate such a structure and
then initialize the value of a member, such as 1ength, automatically.

Takeaway 13.1.3 #2  Consistency between a length member and a flexible array member
must be maintained manually.

13.2. Storage duration, lifetime, and visibility. We have seen in different places
that the visibility of an identifier and accessibility of the object to which it refers are not
the same thing. As a simple example, take the variable(s) x in listing 13.1.

LisTiNG 13.1. An example of shadowing with local variables

#include "c23-fallback.h"

void squarelt (doublex p) [[__unsequenced__]] {
*p *= *p;

}

int main (void) {
double x = 35.0;
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Listing 13.2. An example of shadowing with an extern variable

#include <stdio.h>

1
2
3 |unsigned i = 1;
4
5

int main (void) {
6 unsigned i = 2; /* A new object x/
7 if (i) {
8 extern unsigned i; /* An existing object =/
9 printf ("Su\n", i); /* prints 1 */
10 } else {
11 printf ("Su\n", i); /* prints 2 */
12 }
13 |}

8 doublex* xp = &Xx;

9 {

10 squarelt (&x); /* Refers to double x x/
11 ..
12 [ [maybe_unused]] int x = 0; /* Shadow double x */
13 ..
14 squarelt (xp) ; /% Valid use of double x =x/
15
16 }
17 ..
18 squarelt (&x) ; /* Refers to double x x/
19
20 |}

Here, the visibility scope of the identifier x declared in line 7 starts from that line
and goes to the end of the function main but with a noticeable interruption: from
line 12 to 16, this visibility is shadowed® by another variable, also named x.

Takeaway 13.2 #1  Identifiers only have visibility inside their scope, starting at their decla-
ration.

Takeaway 13.2 #2  The visibility of an identifier can be shadowed by an identifier of the
same name in a subordinate scope.

We also see that the visibility of an identifier and the usability of the object it
represents are not the same thing. First, the double x object is used by all calls to
squarelt, although the identifier x is not visible at the point where the function is
defined. Then, on line 14, we pass the address of the double x variable to the func-
tion squarelt, although the identifier is shadowed there.

Another example concerns declarations that are tagged with the storage class extern.
These always designate an object of static storage duration that is expected to be defined
at file scope;*” see listing 18.2.

This program has three declarations for variables named i but only two defini-
tions: the declaration and definition on line 6 shadows the one on line 3. In turn,
declaration line 8 shadows line 6, but it refers to the same object as the object defined

on line 8.[Exs 4]

40y, fact, such an object can be defined at file scope in another translation unit.

[Exs 41l\Which value is printed by this program?
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Takeaway 13.2 #3  Every definition of a variable creates a new, distinct object.

So, in the following, the char arrays A and B identify distinct objects with distinct

addresses. The expression A == B must always be false:
char const A[] = { 'e’, 'n’, 'd’, "\0', };
char const B[] = { ’e’, ’'n’, ’d’, '\0’, };
char constx c¢c = "end";
char constx = "end";
char constx "friend";

char constx
char constx

(char const[]){ 'e’, 'n’, 'd’, '\0’, };
(char const[]){ 'e’, 'n’, 'd’, "\0’, };

Q +h O Q
1

But how many distinct array objects are there in total? It depends. The compiler
has a lot of choices.

Takeaway 13.2 #4  Read-only object literals may overlap.

In the previous example, we have three string literals and two compound literals.
These are all object literals, and they are read-only: string literals are read-only by def-
inition, and the two compound literals are const-qualified. Four of them have exactly
the same base type and content ("e’, 'n’, "d’, ’\0"),so the four pointers c, d,
£, and g may all be initialized to the same address of one char array. The compiler
may even save more memory. This address may just be &e [3] by using the fact that
end appears at the end of friend.

As we have seen from these examples, the usability of an object not only is a lexical
property of an identifier or the position of definition (for literals) but also depends on
the state of execution of the program. The lifetime® of an object has a start point and
an end point.

Takeaway 13.2 #5  Objects have a lifetime outside of which they can’t be accessed.

Takeaway 13.2 #6 A program execution that refers to an object outside of its lifetime fails.

How the start and end points of an object are defined depends on the tools we use
to create it. We distinguish four different storage durations® for objects in C: static®
when it is determined at compile time, automatic® when it is automatically determined
at runtime, allocated® when it is explicitly determined by function calls malloc and
friends, and thread® when it is bound to a certain thread of execution.

Table 13.1 gives an overview of the complicated relationship between declarations
and their storage classes, initialization, linkage, storage duration, and lifetime. Without
going into too much detail for the moment, it shows that the usage of keywords and the

underlying terminology are quite confusing.

First, unlike what the name suggests, the storage class extern may refer to identi-
fiers with external or internal lin/eage.ﬁ Here, in addition to the compiler, an identifier
with linkage is usually managed by another external program, the linker”. Such an
identifier is initialized at the startup of the program, even before it enters main, and
the linker ensures that. Identifiers accessed from different object files need external link-
age so they all access the same object or function and the linker is able to establish the
correspondence.

Important identifiers with external linkage we have seen are the functions of the
C library. They reside in a system libraryC, usually called something like 1ibc. so,

and not in the object file you created. Otherwise, a global, file scope, object, or function

42Note that linkage is a property of identifiers, not of the objects they represent.
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without connection to other object files should have internallinkage. All other identifiers
43

Then, static storage duration is not the same as declaring a variable with the storage
class statie. The latter is merely enforcing that a variable or function has internal
linkage. Such a variable may be declared in file scope (global) or a block scope (local).
ﬁYou probably have not yet called the linker of your platform explicitly. Usually, its
execution is hidden behind the compiler frontend that you are calling, and a dynamic
linker may only kick in as late as program startup without being noticed.

have no linkage.

For the first three types of storage duration, we have seen a lot of examples. Thread
storage duration (thread_local since C23; previously _Thread_local) is related
to C’s thread API, which we will see later, in section 20.

Allocated storage duration is straightforward: the lifetime of such an object starts
from the corresponding call to malloc, calloc, realloc, or aligned_alloc
that creates it. It ends with a call to free or realloc that destroys it or, if no such
call is issued, at the end of the program execution.

437 better keyword for extern would perhaps be 1inkage.
447 petter keyword for statiec in this context would perhaps be internal, with the understanding that

any form of linkage implies static storage duration.

TasLe 13.1. Storage classes, scope, linkage of identifiers, and storage
duration of the associated objects. Tentative indicates that a definition
is implied only if there is no other definition with an initializer. Induced
indicates that the linkage is internal if another declaration with internal
linkage has been met prior to that declaration; otherwise, it is external.
Compound literals follow similar rules with respect to the block in

which they occur, if any.

Class Scope Definition Linkage Duration  Lifetime
Initialized File Yes External  Static ‘Whole execution
extern, initialized File Yes External Static Whole execution
String literal Any  Yes N/A Static Whole execution
static, initialized Any  Yes Internal ~ Static Whole execution
constexpr Any  Yes Internal  Static Whole execution
Uninitialized File Tentative  External Static ‘Whole execution
extern, uninitialized Any  No Induced Static ‘Whole execution
statie, uninitialized Any  Tentative Internal Static Whole execution
thread local File Yes External Thread Whole thread
extern thread_local Any No External Thread Whole thread
static thread local Any  Yes internal ~ Thread Whole thread
Non-VLA None
Non-VLA, auto Block Yes None Automatic Block of definition
register None
VLA Block  Yes None Automatic  From definition to
end of block
Function return Block Yes None Automatic To the end of

with array

expression
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The two other cases of storage duration need additional explanation, so we will
discuss them in more length next. Since C23, compound literals can also have storage
classes in their type. We have a relatively simple rule.

Takeaway 18.2 #7 A compound literal has the same lifetime as a variable that would be
declared with the same storage class within the same context.

The only possible exception is compound literals that are const-qualified and
appear without any storage class specification in block scope. These need not even
correspond to a unique object and can indeed refer to storage that is available during
the whole program execution.

13.2.1. Static storage duration. Objects with static storage duration can be defined
in different ways:

e Objects defined in file scope and not declared with thread_local. Variables
and compound literalsﬁ can have that property.

e Variables and compound literals defined inside a block and have the storage
class specifier static and no additional thread_local.

e String literals, which are arrays of char or a wide character type and always
have static storage duration.

Such objects have a lifetime that spans the entire program execution. Because they are
considered alive before any application code is executed, they can only be initialized
with expressions that are known at compile time or can be resolved by the system’s
process startup procedure. Here’s an example:

double A = 37;
doublex p = & (static double){ 1.0, };
int main (void) {
static double B;
}

This defines four objects of static storage duration—those identified with A, p, and B
and a compound literal defined in line 2. Three of them have type double, and one
has type doublex*.

All four objects are properly initialized from the start; three are initialized explicitly,
and B is initialized implicitly with 0.

Takeaway 13.2.1 #1  Obyjects with static storage duration are always initialized.

The initialization of p is an example that needs a bit more magic than the compiler
itself can offer. It uses the address of another object. Such an address can usually only
be computed when the execution starts. This is why most C implementations need the
concept of a linker, as we discussed earlier.

The example of B shows that the name of an object with a lifetime that spans the
entire program execution isn’t necessarily visible in the entire program. The extern
example also shows that an object with static storage duration that is defined elsewhere
can become visible inside a narrow scope.

18.2.2. Automatic storage duration. This is the most complicated case: rules for au-
tomatic storage duration are implicit and, therefore, need the most explanation. Several
cases of objects can be defined explicitly or implicitly and fall into this category:

e Any block scope variables and compound literals that are not declared static,
declared without storage class, with the legacy storage class autoﬁor with
register or constexpr.

458ince €23.
46Beware: this keyword also plays a role in type inference, which we will see in full in section 18.
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e Some temporary objects that are returned by function calls

The simplest and most common case for the lifetime of automatic objects is when the
object is not a variable-length array (VLA).

Takeaway 138.2.2 #1  Unless automatic objects are VLA or temporary objects, they have a
lifetime corresponding to the execution of their block of definition.

That is, most local variables are created when program execution enters the scope
in which they are defined, and they are destroyed when the program leaves that scope.
But, because of recursion, several instancesC of the same object may exist at the same
time.

Takeaway 13.2.2 #2  Each recursive call creates a new local instance of an automatic object.

Objects with automatic storage duration have a big advantage for optimization: the
compiler usually sees the full usage of such a variable and, with this information, is able
to decide if it may be an alias. This is where the difference between the legacy auto,
constexpr, and register variables come into play.

Takeaway 13.2.2 #3  The & operator is not allowed for objects declared with register.

With that, we can’t inadvertently take the address of a register object (takeaway
12.3 #2). As a simple consequence, we get the following rule.

Takeaway 13.2.2 #4  Objects declared with register can’t alias.

So, with register declarations, the compiler can be forced to tell us where we
are taking the address, and we may identify spots with some optimization potential.
This works well for all objects that are not arrays and that contain no arrays.

Takeaway 18.2.2 #5  Declare local variables that are not arrays in performance-critical
code as register.

Arrays play a particular role here because they decay to the address of their first
element in almost all contexts. So, for arrays, we need to be able to take addresses.

Takeaway 13.2.2 #6  Arrays with storage class register are useless.

There is another case where the presence of arrays needs special treatment. Some
return values of functions can really be chimeras: objects with temporary lifetime. As you
know now, functions normally return values, and as such, values are not addressable.
But if the return type contains an array type, we must be able to take the address im-
plicitly, so the [1 operator is well defined. Therefore, the following function return is
a temporary object, of which we may implicitly take an address by using the member
designator .ory [0]:

struct demo { unsigned ory([l]; };
struct demo mem (wvoid) ;

printf ("mem() .ory[0] _is_%u\n", mem() .ory[0]);

The only reason objects with temporary lifetime exist in C is to access members of
such a function return value. Don’t use them for anything else.

Takeaway 18.2.2 #7  Objects of temporary lifetime are read-only.
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Takeaway 13.2.2 #8  Temporary lifetime ends at the end of the enclosing full expression.

That is, their life ends as soon as the evaluation of the expression in which they oc-
cur is terminated. For example, in the previous example, the temporary object ceases
to exist as soon as the argument for print £ is constructed. Compare this to the defini-
tion of a compound literal: a compound literal would live on until the enclosing scope
of the print £ terminates.

13.3. Digression: using objects before their definition. The following section
goes into more detail about how automatic objects spring to life (or not). It is a bit
tough, so if you are not up to it right now, you might skip it and come back to it later.
It will be needed to understand subsection 13.5 about concrete machine models, but
that subsection is a digression too. Also, it introduces the new features goto and labels,
which we need later, in subsection 15.6 for handling errors.

Let us get back to the rule for the lifetime of ordinary automatic objects (takeaway

13.2.2 #1). It is quite particular if you think about it: the lifetime of such an object

starts when its scope of definition is entered, not, as one would perhaps expect, later,
when its definition is first encountered during execution.

To note the difference, let us look at listing 13.3, which is a variant of an example
in the C standard document.

ListinG 13.3. A contrived example for the use of a compound literal

void fgoto (unsigned n) {
unsigned j = 0;
unsigned* p = nullptr;
unsignedx q;

AGAIN:

if (p) printf ("S$u:_p_and g are_%s,_*p_is su\n",
3,
(g == p) ? "equal" : "unequal",
*p) ;

qa = ps

p = &((unsigned){ j, });

++3;

if (j <= n) goto AGAIN;

We are particularly interested in the lines printed if this function is called as fgoto (2) .

On my computer, the output looks like this:

Terminal

1: p and g are unequal, *p is 0

2: p and g are equal, *p is 1

Admittedly, this code is a bit contrived. It uses a new construct we haven’t yet
seen in action, goto. As the name indicates, this is a jump statement®. In this case,
it instructs the computer to continue execution at label’ AGAIN. Later, we will see
contexts where using goto makes a bit more sense. The demonstrative purpose here
is just to jump over the definition of the compound literal in line 14.

So, let us look at what happens with the print £ call during execution. Forn == 2,
execution meets the corresponding line three times; but because p is initially null, at the
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3 ‘ o) ‘ q ‘ printf
0 0 Undetermined | Skipped
1 | Addr of literal of j = 0 0| printed

2 | Addr of literal of j = 1 | Addr of literal of j =0 | printed

first passage, the print £ call itself is skipped. The values of our three variables in that
line are

Here, we see that for §==2 pointers, p and g hold addresses obtained at different
iterations. So why, then, does my printout say that both addresses are equal? Is this just
a coincidence? Or is there undefined behavior because I am using the compound literal
lexically at a place before it is defined?

The C standard prescribes that the output shown here must be produced. In par-
ticular, for §==2, the values of p and g are equal and valid, and the value of the object
they are pointing to is 1. Or, stated another way, in this example, the use of *p is well
defined, although lexically the evaluation of »p precedes the definition of the object.
Also, there is exactly one such compound literal, and therefore, the addresses are equal
for j==2.

Takeaway 13.8 #1  For an object that is not a VLA, lifetime starts when the scope of the
definition is entered, and it ends when that scope is left.

Takeaway 138.8 #2  Initializers of automatic variables and compound literals are evaluated
each time the definition is met.

In this example, the compound literal is visited three times and set to the values 0,
1, and 2 in turn.
For a VLA, the lifetime is given by a different rule.

Takeaway 13.8 #3  For a VLA, lifetime starts when the definition is encountered and ends
when the visibility scope is left.

So, for a VLA, our strange trick of using goto would not be valid: we are not
allowed to use the pointer to a VLA in code that precedes the definition, even if we are
still inside the same block. The reason for this special treatment of VLAs is that their
size is a runtime property, and therefore, the space for it simply can’t be allocated when
the block of the declaration is entered.

13.4. Initialization. In subsection 5.5, we discussed the importance of initializa-
tion. It is crucial to guarantee that a program starts in a well-defined state and stays so
throughout execution. The storage duration of an object determines how it is initial-
ized.

Takeaway 13.4 #1  Objects of static or thread-storage duration are initialized by default.

As you probably recall, such a default initialization is the same as initializing all
members of an object by 0 (for arithmetic types) or nullptr (for pointer types). In
particular, default initialization works well for base types that might have a nontrivial
representation for their { } value—namely, pointers and floating point types.

For other objects, automatic or allocated, we must do something.

Takeaway 13.4 #2  Objects of automatic or allocated storage duration must be initialized
explicitly.
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The simplest way to achieve initialization is by using initializers, which put vari-
ables and compound literals in a well-defined state as soon as they become visible. Since
C23, this is even possible for arrays that we allocate as VLA if we use the default initial-
ization of the array as a whole. For arrays that we allocate dynamically and for which we
know that setting all bits to zero is a valid initialization (basically all integer types), we
should use calloc instead of malloc to do the allocation. Where this is not possi-
ble (types that contain floating point data or pointers), we have to provide initialization
through assignment. In principle, we could do this manually each time we allocate such
an object, but such code becomes diflicult to read and maintain because the initializa-
tion parts may visually separate definition and use. The easiest way to avoid this is to
encapsulate initialization into functions.

Takeaway 13.4 #3  Systematically provide an initialization function for each of your data
Lypes.

Here, the emphasis is on systematically: you should have a consistent convention
for how such initializing functions should work and how they should be named. To see
that, let us go back to rat_init, the initialization function for our rat data type. It
implements a specific API for such functions:

For a type toto, the initialization function is named toto_init.

e The first argument to such a _init function is the pointer to the object to
be initialized.
o If that pointer to an object is null, the function does nothing.

Other arguments can be provided to pass initial values for certain members.
The function returns the pointer to the object it received or a null pointer if
an error occurred.

With these properties, such a function can be used easily in an initializer for a pointer:

|
\rat const+ myRat = rat_init (malloc(sizeof (rat)), 13, 7);
L

This has several advantages:

o If the call to malloc fails by returning a null pointer, the only effect is that
myRat is initialized to null. Thus myRat is always in a well-defined state.

e If we don’t want the object to be changed afterward, we can qualify the pointer
target as const from the start. All modification of the new object happens
inside the initialization expression on the right side.

Since such initialization can then appear in many places, we can also encapsulate this
into another function:

rat* rat_new(long long numerator,
unsigned long long denominator) {
return rat_init (malloc (sizeof (rat)),
numerator,
denominator) ;

The initialization using that function becomes

|
‘rat const*x myRat = rat_new(13, 7);
L

Macro addicts like myself can even easily define a type-generic macro that does
such an encapsulation once and for all:

‘ #define PO99_NEW(T, ...) T ## _init (malloc(sizeof(T)), _ VA ARGS_ )
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With this, we could have written the earlier initialization as

[ ]
| rat const myRat = P99_NEW(rat, 13, 7); \

This has the advantage of being at least as readable as the rat_new variant, but it
avoids the additional declaration of such a function for all types that we define.

Such macro definitions are frowned upon by many, so some projects probably will
not accept this as a general strategy, but you should at least be aware that the possibility
exists. It uses two features of macros that we have not yet encountered:

e Concatenation of tokens is achieved with the ## operator. Here, T ## _init
melds the argument T and _init into one token. With rat, this produces
rat_init; with toto, this produces toto_init.

e The construct . .. provides an argument list of variable length. The whole
set of arguments passed after the first is accessible inside the macro expan-
sion as __VA_ARGS__. That way, we can pass any number of arguments as
required by the corresponding _init function to P99_NEW.

If we have to initialize arrays using a £or loop, things get even uglier. Here also, it is
easy to encapsulate with a function:

ratx rat_vinit (size_t n, rat p[n]) {

if (p)
for (size t 1 = 0; 1 < n; ++1)
rat_init (p+i, 0, 1);

return p;

With such a function, again, initialization becomes straightforward:

T ]
‘ rat* myRatVec = rat_vinit (44, malloc(sizeof (rat[44]))); ‘
| |

Here, encapsulation into a function is better since repeating the size can easily in-
troduce errors:

rat* rat_vnew(size t size) {
return rat_vinit (size, malloc (sizeof (rat[size]l)));

13.5. Digression: A machine model. Up to now, we mostly argued about C code
from within, using the internal logic of the language to describe what was going on. This
section is an optional digression that deviates from that: it is a glimpse into the machine
model of a concrete architecture. We will see in more detail how a simple function is
translated into this model and, in particular, how automatic storage duration is realized.
If you really can’t bear it yet, you may skip it for now. Otherwise, remember not to panic
and dive in.

Traditionally, computer architectures were described with the von Neumann mode
In this model, a processing unit has a finite number of hardware registers that can hold
integer values, a main memory that holds the program as well as data and that is linearly
addressable, and a finite instruction set that describes the operations that can be done
with these components.

1_47

47nvented around 1945 by J. Presper Eckert and John William Mauchly for the ENIAC project; first
described by John von Neumann (1903 —1957, also known as Neumann Jdnos Lajos and Johann Neumann
von Margitta), one of the pioneers of modern science, in von Neumann [1945].
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The intermediate programming languages usually used to describe machine in-
structions as they are understood by your CPU are collectively called assembler” or
assembly® languages, and they still pretty much build upon the von Neumann model.
There is not one unique assembly language (like C, which is valid for all platforms)
but an entire set of dialects that take different particularities into account—including the
CPU, the compiler, and the operating system. The one we use here is the one used
by the gcc compiler for the x86_64 processor architecture.’™ 481 If you don’t know
what that means, don’t worry; this is just an example of one such architecture.

Listing 13.4 shows an assembler printout for the function fgot o from listing 13.3.
Such assembler code operates with instructions® on hardware registers and memory
locations. For example, the line movl $0, -16(%rbp) stores (moves) the value 0 to
the location in memory 16 bytes below the one indicated by register $rbp. The as-
sembler program also contains labelsC that identify certain points in the program. For
example, £goto is the entry point® of the function, and . L_AGAIN is the counterpart
in assembler to the goto label AGAIN in C.

As you probably have guessed, the text on the right after the # character are com-
ments that try to link individual assembler instructions to their C counterparts.

This assembler function uses the following hardware registers:

%eax %$ecx %$edi %$edx %esi %rax %rbp %rcx $rdx $rsp

This list includes much more than the original von Neumann machine had, but the
main ideas are still present: we have some general-purpose registers that are used to
represent values of the state of a program’s execution. Two others have very special
roles: $rbp (base pointer) and $rsp (stack pointer).

The function disposes of a reserved area in memory, often called the stack®, which
holds its local variables and compound literals. The “upper” end of that area is desig-
nated by the $rbp register, and the objects are accessed with negative offsets relative to
that register. For example, the variable n is found from position —3 6 before $rbp en-
coded as -36 (%rbp) . The following table represents the layout of this memory chunk
that is reserved for function £goto and the values stored there at three different points
of the execution of the function.

...printf fgoto caller...
Position -48 | -36 | -28 -24 -16 -8 | -4 | rbp
Meaning n cmp_lit | g P j
Afterinit | g4l | g4l | 2 KAt/ At 0 M | 0
After iter O | g4fh' | g4l | 2 0 0 rbp-28 | Kb | 1
Afteriter 1 | g4l | gty | 2 1 rbp-28 | rbp-28 | Kdth' | 2

This example is of particular interest for learning about automatic variables and
how they are set up when execution enters the function. On this particular machine,
when entering £goto, three registers hold information for this call: $edi holds the
function argument, n; $rbp points to the base address of the calling function; and $rsp
points to the top address in memory where this call to £goto may store its data.

Now let us consider how the previous assembler code (listing 13.4) sets up things.
Right at the start, £goto executes three instructions to set up its “world” correctly. It
saves $rbp because it needs this register for its own purpose, it moves the value from
$rsp to $rbp, and then it decrements $rsp by 48. Here, 48 is the number of bytes
the compiler has computed for all automatic objects that the £goto needs. Because
of this simple type of setup, the space reserved by that procedure is not initialized but
filled with garbage. In the three following instructions, three of the automatic objects
are then initialized (n, j, and p), but others remain uninitialized until later.

[Exs 481Rind out which compiler arguments produce assembler output for your platform.
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Listing 13.4. An assembler version of the £goto function

.type fgoto, @function

fgoto:
pushg $rbp # Save base pointer
movqg $rsp, %rbp # Load stack pointer
subg $48, %rsp # Adjust stack pointer
movl %edi, -36 (%rbp) # fgoto#0 => n
movl $0, -4 (%rbp) # init jJ
movq $0, -16(%rbp) # init p

.L_AGAIN:
cmpg $0, -16 (%rbp) # if (p)
je .L_ELSE
movq -16 (%rbp), %rax # p ==> rax
movl ($rax), %edx # *p ==> edx
movq -24 (%rbp), %rax # == q)°?
cmpq -16 (%rbp), %rax # (p == )7
jne .L_YES
movl $.L_STR EQ, %eax # Yes
Jjmp .L_NO

.L_YES:
movl $.L_STR NE, %eax # No

.L_NO:
movl -4 (%rbp), %esi # 3 ==> printf#l
movl %edx, %ecx # *p ==> printf#3
movq $rax, %rdx # eq/ne ==> printf#2
movl $.L_STR_FRMT, %edi # frmt ==> printf#0
movl $0, %eax # clear eax
call printf

.L_ELSE:
movqg -16 (%rbp), %rax # p ==
movq $rax, —24 (%rbp) # ==> q
movl -4 (%rbp), %eax # j ==
movl %eax, —28 (%rbp) # ==> cmp_lit
leaq -28 (%rbp), %rax # &cmp_lit ==
movqg $rax, —16 (%rbp) # ==> p
addl $1, -4 (%rbp) # ++3
movl -4 (%rbp), %eax # if (7
cmpl -36 (%rbp), %eax # <= n)
jbe .L_AGAIN # goto AGAIN
leave # Rearange stack
ret # return statement

After this setup, the function is ready to go. In particular, it can easily call another
function: $rsp now points to the top of a new memory area that a called function can
use. This can be seen in the middle part, after the label .1_No. This part implements
the call to print£. It stores the four arguments the function is supposed to receive
in registers $edi, %esi, %ecx, $rdx, in that order. It then clears $eax and calls the

function.

To summarize, the setup of a memory area for the automatic objects (without VLLA)
of a function only needs a few instructions, regardless of how many automatic objects
are effectively used by the function. If the function had more, the magic number 48

would need to be modified to the new size of the area.
As a consequence of the way this is done,
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Listing 13.5. An optimized assembler version of the £goto function

.type fgoto, @function
fgoto:
pushg $rbp # Save base pointer
pushqg $rbx # Save rbx register
subg $8, %rsp # Adjust stack pointer
movl %edi, %ebp # fgoto#0 => n
movl $1, %ebx # init j, start with 1
xorl %ecx, %ecx # 0 ==> printf#3
movl $.L_STR NE, %edx # "ne" ==> printf#2
testl %edi, %edi # if (n > 0)
jne .LNGT O
Jjmp .L_END
.L_AGAIN:
movl %eax, %ebx # j+1 ==> j
.L N GT O:
movl %ebx, %esi # 3 ==> printf#l
movl $.L_STR _FRMT, %edi # frmt ==> printf#0
xorl %eax, %eax # Clear eax
call printf
leal 1 (%rbx), %eax # J+1 ==> eax
movl $.L_STR EQ, %edx # "eq" ==> printf#2
movl %ebx, %ecx # 3 ==> printf#3
cmpl %ebp, %eax # if (J <= n)
jbe .L_AGAIN # goto AGAIN
.L_END:
addgq $8, %rsp # Rewind stack
PopPgq $rbx # Restore rbx
popa $rbp # Restore rbp
ret # return statement

e Automatic objects are usually available from the start of a function or scope.
e Initialization of automatic variables is not enforced.

This does a good job of mapping the rules for the lifetime and initialization of automatic
objects in C.

The earlier assembler output is only half the story, at most. It was produced with-
out optimization to show the principle assumptions that can be made for such code
generation. When using optimization, the as-if rule (takeaway 5.1.3 #3) allows us to
reorganize the code substantially. With full optimization, my compiler produces some-
thing like listing 18.5.

As you can see, the compiler has completely restructured the code. This code re-
produces the effects that the original code had: its output is the same as before. But it
doesn’t use objects in memory, doesn’t compare pointers for equality, and has no trace
of the compound literal. For example, it doesn’t implement the iteration for §=0 at all
This iteration has no effect, so it is simply omitted. Then, for the other iterations, it dis-
tinguishes a version with =1, where the pointers p and g of the C program are known
to be different. Then, the general case has to increment j and set up the arguments for
print£ accordingly.Fxs 491Exs 501

[Exs 49]Using the fact that p is assigned the same value over and over again, write a C program that gets closer

to what the optimized assembler version looks like.
[Exs 50]Eyen the optimized version leaves room for improvement: the inner part of the loop can still be short-
ened. Write a C program that explores this potential when compiled with full optimization.
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All we have seen here is code that doesn’t use VLA. These change the picture. The
trick that simply modifies $rsp with a constant doesn’t work if the needed memory is
not a constant size. For a VLA, the program has to compute the size during execution
from the actual values of the bounds of the VLA, it has to adjust $rsp accordingly
there and then undo the modification of $rsp once execution leaves the scope of the
definition of the VLA. So here, the value of adjustment for $rsp cannot be computed
at compile time but must be determined during the execution of the program.
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Summary

Storage for a large number of objects or for objects that are large in size can
be allocated and freed dynamically. We have to keep track of this storage
carefully.

o Identifier visibility and storage duration are different things.

e Initialization must be done systematically with a coherent strategy for each
type.

C’s allocation strategy for local variables maps well to low-level handling of
function stacks.



252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

220 2. COGNITION

14. More involved processing and 10

This section covers

Working with pointers

Formatting input

Handling extended character sets
Input and output with binary streams
Checking errors and cleaning up

Now that we know about pointers and how they work, we will shed new light on some C
library features. C’s text processing is incomplete without pointers, so we will start this
section with an elaborated example in section 14.1. Then we will look at functions for
formatted input (section 14.1); these require pointers as arguments, so we necessarily
delayed their presentation until now. A whole new series of functions is then presented
to handle extended character sets (section 14.3) and binary streams (section 14.6). We

round out this section and the entire level with a discussion of clean error handling
(section 14.6)).
s

14.1. Text processing. As a first example, consider the following program, which
reads a series of lines, each with several numbers from stdin, and writes these same
numbers in a normalized way to stdout as comma-separated hexadecimal numbers:

int main (void) {
char 1buf[256];
for (;;) {
if (fgetline (sizeof lbuf, lbuf, stdin)) {

size_t n;
size_t* nums = numberline (strlen (lbuf)+1, lbuf, &n, 0);
if (nums) {
int ret = fprintnumbers (stdout, "%#zX", ",\t", n, nums);

if (ret < 0) return EXIT FAILURE;
free (nums) ;
}
} else {
if (1lbuf[0]) { /* a partial line has been read =*/
for (;;) {

int ¢ = getc(stdin);

if (c == EOF) return EXIT FAILURE;

if (¢ == '\n’) {
fprintf (stderr, "line too_long:_%$s\n", lbuf);
break;

}

}
} else break; /* regular end of input =*/

This program splits the job into three different tasks:

e fgetline to read aline of text
e numberline to split such a line in a series of numbers of type size_t
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e fprintnumbers to print them

At the heart is the function numberline. It splits the 1buf string that it receives
into numbers, allocates an array to store them, and returns the count of these numbers
through the pointer parameter np if that is provided:

numberline.c

numberline:

interpret string [buf as a sequence of numbers represented with base
Returns: a newly allocated array of numbers as found in lbuf

Parameters:

lbuf | is supposed to be a string

np | if non-null, the count of numbers is stored in *np

base | value from 0 to 36, with the same interpretation as for
strtoul and similar functions

Remarks: The caller of this function is responsible to £ree the array that is re-
turned.

size_t* numberline (size_t size,
char const lbuf [restrict static size],
size_trrestrict np, int base);

That function itself is split into two parts, which perform quite different tasks.
One performs the task of interpreting the line, numberline_inner. The other,
numberline itself, is just a wrapper around the first that verifies or ensures the pre-
requisites for the first. Function numberline_inner puts the C library function
strtoull in aloop that collects the numbers and returns a count of them.

Now we see the use of the second parameter of strtoull. Here, it is the address
of the variable next, and next is used to keep track of the position in the string that
ends the number. Since next is a pointer to char, the argument to strtoull is a
pointer to a pointer to char:

numberline.c

static

size_t numberline_inner (char constxrestrict act,
size_t numb[restrict static 1],
int base) {

size_.t n = 0;

for (charx next = nullptr; act[0]; act = next) {
numb [n] = strtoull (act, &next, base);
if (act == next) break;
++n;

}

return n;

Suppose strtoull is called as strtoull ("0789%a", s&next, base). Ac-
cording to the value of the parameter base, that string is interpreted differently. If, for
example, base has the value 10, the first non-digit is the character 7 a’ at the end:
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Base ‘ Digits ‘ Number ‘ *next

8 2 7 "8’
10 4 789 ra’
16 5| 80,874 | r\of

0 2 7 "8’

Remember the special rules for base 0. The effective base is deduced from the first
(or first two) characters in the string. Here, the first characterisa ’ 0’, so the string is
interpreted as being octal, and parsing stops at the first non-digit for that base: ’ 87 .
There are two conditions that may end the parsing of the line that numberline_...

...1inner receives:

e act points to a string termination, namely to a 0 character.

e Function strtoull doesn’t find a number, in which case next is set to the

value of act.

These two conditions are found as the controlling expression of the £or loop and the
if-break condition inside.

Note that the C library function strtoull has a historical weakness: the first ar-
gument has type char const x, whereas the second has type char* x, without const
qualification. This is why we had to type next as charx and couldn’t use char
const~*. As a result of a call to strtoull, we could inadvertently modify a read-
only string and crash the program.

Takeaway 14.1 #1 The string strto. . . conversion functions are not const-safe.

Now, the function number1ine itself provides the glue around numberline_...
...inner:

e If np is null, it is set to point to an auxiliary.

e The input string is checked for validity.

e An array with enough elements to store the values is allocated and tailored to
the appropriate size once the correct length is known.

We use three functions from the C library: memchr, malloc, and realloc. As in
previous examples, a combination of malloc and realloc ensures that we have an
array of the necessary length:

The call to memchr returns the address of the first byte that has value 0 if there
is any or a null pointer if there is none. Here, this is just used to check that within the
first size bytes, there effectively is a 0 character. That way, it guarantees that all the
string functions used underneath (in particular, strtoull) operate on a 0-terminated
string.

Before C23 memchr was a problematic interface. There only was a function with
that name that returns a void~ that potentially points to a read-only object.

Takeaway 14.1 #2  The function interfaces for memchzr and strchr search functions are
not const-safe.

C23 added type-generic macro interfaces that solve this defect. We will discuss
these type-generic interfaces in more detail in section 18.1.7.

Takeaway 14.1 #3  The type-generic interfaces for memchr and st rchr search functions
are const-safe.

In contrast, functions that return an index position within the string would be safe.

Takeaway 14.1 #4 The strspn and strcspn search functions are const-safe.
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size_t* numberline (size_t size,
char const lbuf|[restrict static size],
size_txrestrict np, int base) {
size_t* ret = nullptr;
size_ t n = 0;
/* Check for validity of the string, first. */
if (memchr (lbuf, 0, size)) {
/+ The maximum number of integers encoded.
To see that this may be as much look at

the sequence 08 08 08 08 ... and suppose
that base is 0. x/
ret = malloc (sizeof (size_t[1+ (2xsize)/3]1));
if (!ret) return nullptr;
n = numberline_inner (lbuf, ret, base);
size_ t len = n ? n : 1;
size _t*x ret2 = realloc(ret, sizeof (size_t[len]));

if (ret2) ret = ret2;
}
if (np) *np = n;
return ret;

Unfortunately, they have the disadvantage that they can’t be used to check whether
a char array is, in fact, a string. So, they can’t be used here.
Now, let us look at the second function in our example:

numberline.c

fgetline:
read one text line of at most size-1 bytes.
The " \n’ character is replaced by 0.

Returns: s if an entire line was read successfully. Otherwise, 0 is returned and s
contains a maximal partial line that could be read. s is null terminated.

charx fgetline (size_t size,
char s[restrict size],
FILE+restrict stream);

This is quite similar to the C library function £gets. The first difference is the
interface: the parameter order is different, and the size parameteris a size_t instead
of an int. Like £gets, it returns a null pointer if the read from the stream fails. Thus,
the end-of-file condition is easily detected on st ream.

More important is that fget1line handles another critical case more gracefully.
It detects whether the next input line is too long or whether the last line of the stream
ends without a / \n’ character:
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charx fgetline(size_t size,
char s[restrict size],
FILE+restrict stream) {
s[0] = 0;
charx ret = fgets (s, size, stream);
if (ret) {
/* Uses non-const variant of strchr =*/
char+ pos = strchr(s, ’'\n’);
if (pos) xpos = 0;
else ret = nullptr;
}

return ret;

The first two lines of the function guarantee that s is always null terminated either
by the call to £gets, if successful, or by enforcing it to be an empty string. Then, if
something is read, the first * \n’ character found in s is replaced with 0. If none is
found, a partial line has been read. In that case, the caller can detect this situation and
call fgetline again to attempt to read the rest of the line or to detect an end-of-file
condition.[Fxs 511

In addition to £gets, this uses strchr from the C library. Since C23, the lack
of const safeness of the function interface is not an issue; the type-generic interface
gives the appropriate guarantees.

Since it involves a lot of detailed error handling, we will go into more depth about
the function fprintnumbers in subsection 15.6. For our purpose here, we restrict
ourselves to the discussion of function sprintnumbers, which is a bit simpler because
it only writes to a string instead of a stream and because it just assumes that the buffer
buf that it receives provides enough space:

numberline.c

sprintnumbers:

print a series of numbers nums in buf, using print £ format form, separated by sep
characters and terminated with a newline character.

Returns: the number of characters printed to buf.

This supposes that tor and buf are big enough and that form is a format suitable to
print size_t.

int sprintnumbers (size_t tot, char buf|[restrict tot],
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len, size t nums|[restrict static len

1)

The function sprintnumbers uses a function of the C library that we haven’t
met yet: sprint£. Its formatting capacities are the same as those of printf and
fprintf£, only it doesn’t print to a stream but rather to a char array:

The function sprint £ always ensures that a 0 character is placed at the end of the
string. It also returns the length of that string, which is the number of characters before

-
[Exs ‘)l]lmprovc the main of the example such that it is able to cope with arbitrarily long input lines.
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int sprintnumbers (size_t tot, char buf|[restrict tot],
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len, size_t nums[const restrict static
len]) {
charx p = buf; /* next position in buf */
size_t const seplen = strlen(sep);
if (len) {
size_t 1 = 0;
for (; 1 < len;) {
p t= sprintf (p, form, nums[i]);
drapal g
if (i >= len) break;
memcpy (p, sep, seplen);
p += seplen;

}
memcpy (p, "\n", 2);
return (p-buf)+1;

the 0 character that has been written. This is used in the example to update the pointer
to the current position in the buffer. sprint£ still has an important vulnerability.

Takeaway 14.1 #5 sprintf makes no provision against buffer overflow.

That is, if we pass an insufficient buffer as a first argument, bad things will happen.
Here, inside sprintnumbers, much like sprint £ itself, we suppose the buffer is large
enough to hold the result. If we aren’t sure the buffer can hold the result, we can use
the C library function snprint£, instead:

int snprintf (charxrestrict s, size_t n, char constxrestrict form,
2)

This function ensures additionally that no more than n bytes are ever written to
s. If the return value is greater than or equal to n, the string is truncated to fit. In
particular, if n is 0, nothing is written into s.

Takeaway 14.1 #6 Use snprint£ when formatting output of unknown length.

In summary, snprint£ has a lot of nice properties:

e The buffer s will not overflow.

o After a successful call, s is a string.

e When called with n set to 0 and s set to a null pointer, snprint£ returns
the length of the string that would have been written.

By using that, a simple £or loop to compute the length of all the numbers printed on
one line looks like this:
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/* Count the chars for the numbers. =*/
for (size_t i = 0; i < len; ++1i)
tot += snprintf (nullptr, 0, form, nums[i]);

We will see later how this is used in the context of fprintnumbers.

CHALLENGE 15 (Text processing in strings). We've covered quite a bit about text processing,
so let’s see if we can actually use it.

Can you search for a given word in a string?

Can you replace a word in a string and return a copy with the new contents?

Can you implement some regular expression-matching functions for strings? For example, find
a character class such as [A-Q] or [~0-9] and maich with * (meaning “anything”) or ?
(meaning “any character”).

Or can you implement a regular expression-matching function for POSIX character classes such
as [[:alpha:]], [[:digit:]], and so on?

Can you stitch all these functionalities together to search for a regexp in a string?

Do query-replace with regexp against a specific word?

Extend a regexp with grouping?

Extend query-replace with grouping?

14.2. Formatted input. Similar to the print £ family of functions for formatted
output, the C library has a series of functions for formatted input: £scanf for input
from an arbitrary stream, scanf£ for stdin, and sscanf from a string. For example,
the following would read a line of three double values from stdin:

double a[3];
/* Read and process an entire line with three double values. */
if (scanf (" _%1lg_%lg_%lg", &al[0], &al[l]l, &al[2]) < 3) {

printf ("not_enough_input _values!\n");

Tables 14.1 to 14.8 give an overview of the format for specifiers. Unfortunately,
these functions are more difficult to use than print £ and also have conventions that
diverge from print£ in subtle ways.

e To be able to return values for all formats, the arguments are pointers to the
type that is scanned.

TasLE 14.1. Format specifications for seanf and similar functions,
with the general syntax [XX] [WW] [LL]SS

Name Description

XX | * Assignment suppression

WwW | Field width | Maximum number of input characters
LL | Modifier Select width of target type

SS | Specifier Select conversion
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TasLE 14.2. Format specifiers for scanf and similar functions. Bi-
nary support was introduced with C23. With an ’ 17 modifier, spec-
7 [7) transform
multibyte character sequences on input to wide-character wchar_t
arguments; see subection 14.3.

ifiers for characters or sets of characters (" c”’, " s’,

SS Conversion Pointer to Skip space | Analogous to function
rar’ Decimal Signed type Yes strtol, base 10
rif Binary, octal, decimal, or hex | Signed type Yes strtol, base 0
"b’ Binary Unsigned type | Yes strtoul, base 2
"o’ Octal Unsigned type | Yes strtoul, base 8
ru’ Decimal Unsigned type | Yes strtoul, base 10
Y Hexadecimal Unsigned type | Yes strtoul, base 16
"aefg’ | Floating point Floating point | Yes strtod
rgr "%’ character No assignment | No
T’ Characters char No memcpy
rs’ Non-whitespace char Yes strespn with

" ANfAn\r\t\v"
r Scan set String No strspn or strespn
"p’ Address void Yes
n’ Character count Signed type No

Whitespace handling is subtle and sometimes unexpected. A space charac-
ter, * 7, in the format matches any sequence of whitespace: spaces, tabs,
and newline characters. Such a sequence may for example be empty or even
contain several newline characters.

String handling is different. Because the arguments to the scan£ functions
are pointers anyway, the formats "%$c" and "%s" both refer to an argument
of type charx. Whereas "%c" reads a character array of constant length
(of default 1), "%s ™" matches any sequence of non-whitespace characters and
adds a terminating 0 character.

The specifications of types in the format have subtle differences compared
to print£, in particular for floating-point types. To be consistent between
the two, it is best to use "$1g" or similar for double and "$Lg" for long
double for both print f and scanf.

There is a rudimentary utility to recognize character classes. For example,
a format of "$ [aeiouRAEIOU]" can be used to scan for the vowels in the
Latin alphabet. In such a character class specification, the caret ~ negates the
class if it is found at the beginning. Thus, "% [*\n]%* [\n]" scans a whole
line (which must be non-empty) and then discards the newline character at
the end of the line.

These particularities make the secan£ family of functions difficult to use. For example,
our seemingly simple example has the flaw (or feature) that it is not restricted to read a
single input line, but it would happily accept three double values spread over several
lines." 92 Tn most cases where you have a regular input pattern, such as a series of

numbers,

they are best avoided.

[Exs 52]Modify the format string in the example such that it only accepts three numbers on a single line, sepa-
rated by blanks, and such that the terminating newline character (eventually preceded by blanks) is skipped.
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TaBLE 14.8. Format modifiers for scanf and similar functions. Note
that £loat and double are handled differently than with print£.

Modifier Type
"L long double
"hh" char types
"h" short types
"o signed, unsigned, float, char arrays and strings
" long integer types, double, wchar_t characters and strings
"iin long long integer types
" intmax_t,uintmax t
LA size_t
"t ptrdiff t
since C23, for N usually 8, 16, 32, 64 or 128
"wN" uint NV_t, int N_t,uint_leastN_t orint_leastN_t
"wEN" | uint_fastN_torint fastN t

14.3. Extended character sets. Up to now, we have used only a limited set of
characters to specify our programs or the contents of string literals that we printed on
the console— a set consisting of the Latin alphabet, Arabic numerals, and some punc-
tuation characters. This limitation is a historical accident that originated in the early
market domination by the American computer industry on one hand and the initial
need to encode characters with a very limited number of bits on the other.ﬁ As we
saw with the use of the type name char for the basic data cell, the concepts of a text
character and an indivisible data component were not very well separated at the start.

Latin, from which we inherited our character set, is long dead as a spoken language.
Its character set is not sufficient to encode the particularities of the phonetics of other
languages. Among the European languages, English has the peculiarity that it encodes
missing sounds with combinations of letters such as ai, ou, and gh (fair enough), not with
diacritical marks, special characters, or ligatures (fir indff), as do most of its cousins. So,
for other languages that use the Latin alphabet, the possibilities were already quite re-
stricted, but for languages and cultures that use completely different scripts (Greek, Rus-
sian) or even completely different concepts (Japanese, Chinese), this restricted Ameri-
can character set is clearly not sufficient.

During the first years of market expansion around the world, different computer
manufacturers, countries, and organizations provided native language support for their
respective communities more or less randomly and added specialized support for graph-
ical characters, mathematical typesetting, musical scores, and so on without coordina-
tion. It was an utter chaos. As a result, interchanging textual information between
different systems, countries, and cultures was difficult, if not impossible, in many cases;
writing portable code that could be used in the context of different languages and dif-
ferent computing platforms resembled the black arts.

Luckily, these years-long difficulties are now mainly mastered, and on modern sys-
tems, we can write portable code that uses “extended” characters in a unified way. The
following code snippet shows how this is supposed to work:

That is, near the beginning of our program, we switch to the “native” locale, and
then we can use and output text containing extended characters— here, phonetics (so-
called IPA). Starting with the call to setlocale is important. Chances are, otherwise,
you’d see garbage if you output characters from the extended set to your terminal. But

53The character encoding dominantly used for the basic character set is referred to as ASCII (American
Standard Code for Information Interchange).
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mbstrings-main.c

87 setlocale (LC_ALL, "");

88 /* Multibyte character printing only works after the locale
89 has been switched. */

90 draw_sep (TOPLEFT " _©_2014 _jenz_ 'guz,tet_", TOPRIGHT);

once you have issued that call to setlocale and your system is well installed, such
characters placed inside multibyte strings "f&r_,indff" should not work out too badly,

see the following discussion.
The output of this looks similar to

© 2014 Jjenz 'guz,tet

The means to achieve this are quite simple. We have some macros with magic

string literals for vertical and horizontal bars and top-left and top-right corners,

mbstrings-main.c

‘ .
43 ‘#define VBAR "\u2502" /*x*< a vertical bar character

44 ‘#define HBAR "\u2500" /*+*< a horizontal bar character
45 ‘#define TOPLEFT "\u250c" /**< topleft corner character

46 ‘#define TOPRIGHT "\u2510" /*x< topright corner character
!

*/
*/
*/
*/

and an ad hoc function that nicely formats an output line,

draw_sep:

Draw multibyte strings start and end separated by a horizontal line.

mbstrings-main.c

void draw_sep (char const start[static 1],
char const end[static 1]) {
fputs (start, stdout);
size_ t slen = mbsrlen(start, 0);
size t elen = 90 - mbsrlen(end, 0);
for (size_t i = slen; 1 < elen; ++i) fputs (HBAR, stdout)
fputs (end, stdout) ;
fputc (' \n’, stdout);

’

This uses a function to count the number of print characters in a multibyte string

(mbsrlen) and our old friends £puts and £putc for textual output.
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mbstrings.h

mbsrlen:

Interpret a mb string in mbs and return its length when interpreted as a wide char-
acter string.

Returns: the length of the mb string or mbinvalid if an encoding error occured.

This function can be integrated into a sequence of searches through a string, as long
as a state argument is passed to this function that is consistent with the mb character
starting in mbs. The state itself is not modified by this function.

Remarks: state of null indicates that mbs can be scanned without considering any
context.

size_t mbsrlen (char constxrestrict mbs,
mbstate_t constxrestrict state);

A multibyte character is a sequence of bytes that is interpreted as representing a single
character of the extended character set, and a multibyte string is a string that contains such
multibyte characters. Luckily, these beasts are compatible with ordinary strings as we
have handled them so far.

Takeaway 14.8 #1  Multibyte characters don’t contain null bytes.

Takeaway 14.3 #2  Multibyte strings are null terminated.

Thus, many of the standard string functions, such as strcpy, work out of the
box for multibyte strings. They introduce one major difficulty, though: the number of
printed characters can no longer be directly deduced from the number of elements of
a char array or by the function strlen. This is why, in the previous code, we use the
(nonstandard) function mbsrlen.

As you can see from the description, parsing multibyte strings for the individual
multibyte characters can be a bit more complicated. In particular, we generally need to
keep a parsing state using the type mbstate_t that is provided by the C standard in
the header files <wchar . h>.%* This header provides utilities for multibyte strings and
characters and also for a wide character type wechar_t. These functions generally may
return different codes that represent the current state of parsing.

54The header uchar . h also provides this type.
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mbstrings.h

mbcode:

The codes returned by multi-byte conversion functions.

In general these functions return a value of type size_t. Therefore the special
codes have to be at the upper end of the range of that type.

This provides names for these constants as enumeration type. This is only pos-
sible since C23, because previously enumeration constants had been limited to
signed int.

Enumerator:
mbinvalid An invalid encoding was encountered.
mbincomplete | The encoding was incomplete.
mbstored A previously detect output character was stored.

enum mbcode {
//! An invalid encoding was encountered.
mbinvalid = (size_t)-1,
//! The encoding was incomplete.
mbincomplete = (size_t)-2,
//! A previously detect output character was stored.
mbstored = (size_t)-3,
bi

But first, we have to introduce another international standard: 1SO 10646 (Uni-
code [2017]). Itattempts to provide a unified framework for character codes (see http:
//www.joelonsoftware.com/articles/Unicode.html) by providinga huge
table of basically all character concepts that have been conceived by humanity so far.>®
Concept here is really important: we have to understand from the print form or glyph
of a particular character in a certain type that, for example, “Latin capital letter A” can
appear as A, A4, A, or A in the present text. Other such conceptual characters, like the
character “Greek capital letter Alpha” may even be printed with the same or similar
glyph “A”.

Unicode places each character concept, or code point in its own jargon, into a linguis-
tic or technical context. In addition to the definition of the character, Unicode classifies
it—for example, as being a capital letter—and relates it to other code points, such as by
stating that A4 is the capitalization of a.

If you need special characters for your particular language, there is a good chance
that you have them on your keyboard and that you can enter them into multibyte strings
for coding in C as is. That is, your system may be configured to insert the whole byte
sequence for 4, say, directly into the text and do all the required magic for you. If you
don’t have or want that, you can use the technique we used for the macros HBAR ear-
lier. There, we used an escape sequence that was new in C11 (https://vycasas.
github.io/2014/05/21/the—-interesting-state—-of-unicode—in-c):a
backslash and a «, followed by four hexadecimal digits encode a Unicode code point.
For example, the code point for “latin small letter a with diaeresis” is 228 or 0xE4. In-
side a multibyte string, this then reads as "\u00E4". Since four hexadecimal digits can
address only 65,536 code points, there is also the option to specify eight hexadecimal
digits, introduced with a backslash and a capital U, but you will encounter this only in
very specialized contexts.

55T0day, Unicode has about 110,000 code points.
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In the previous example, we encoded four graphical characters with such Unicode
specifications, characters that most likely are not on any keyboard. There are several
online sites that allow you to find the code point for any character you need.

If we want to do more than simple input/output with multibyte characters and
strings, things become a bit more complicated. Simple counting of the characters al-
ready is not trivial: strlen does not give the right answer, and other string functions
such as strchr, strspn, and strstr don’t work as expected. Fortunately, the C
standard gives us a set of replacement functions, usually prefixed with wes instead of
str, that will work on wide character strings, instead. The mbsrlen function that we
introduced earlier can be coded as

mbstrings.c

size_t mbsrlen (char const*s, mbstate_t constxrestrict state) {
state = state ? state : MBSTATE;
mbstate_t st = xstate;
size_t mblen = mbsrtowcs (nullptr, &s, 0, é&st);
if (mblen == mbinvalid) errno = 0;
return mblen;

The core of this function is the use of the library function mbsrtowes (multibyte
string [mbs], restartable, to wide character string [wcs]), which constitutes one of the
primitives that the C standard provides to handle multibyte strings:

size_t mbsrtowcs (wchar_ tx*restrict dst, char constxxrestrict src,
size_t len, mbstate_txrestrict ps);

So, once we decrypt the abbreviation of the name, we know that this function is sup-
posed to convert an mbs, src, to awcs, dst. Here, wide characters (wc) of type wchar_t
are used to encode exactly one character of the extended character set. These wide char-
acters are used to form wcs pretty much in the same way as chars compose ordinary
strings: they are null-terminated arrays of such wide characters.

If state is null, mbsrlen also uses a macro MBSTATE (not shown) that provides
an auxiliary buffer of type mbstate_t. Additionally, if the source string for the func-
tion isn’t valid, this function might set errno to some error code. We are not interested
in this, so we reset it to zero before returning.

The C standard doesn’t restrict the encoding used for wehar_t much, but any
sane environment nowadays should use Unicode for its internal representations. You
can check this with two macros as follows:

#ifndef _ STDC ISO _10646_

# warning "wchar_t _wide_characters_have_to_be Unicode_code _points
n

#fendif

#ifdef _ STDC_MB_MIGHT NEQ WC_

# warning "basic_character codes must, _agree_on_char_and wchar t"

#fendif

Modern platforms typically implement wehar_t with either 16- or 82-bit integer
types. Which one usually should not be of much concern to you if you only use the
code points representable with four hexadecimal digits in the \uXxXX notation. Those
platforms that use 16-bit effectively can’t use the other code points in \UXXXXXXXX
notation, but this shouldn’t bother you much.
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Wide characters and wide character string literals follow analogous rules to those
we have seen for char and strings. For both, a prefix of L indicates a wide character
or string. For example, L” &’ and L’ \u00E4’ are the same character, both of type
wchar_t,and L"b\uOO0OE4" is an array of three elements of type wehar_t that con-
tains the wide characters L”’ b’ , L” 4’ , and 0.

Classification of wide characters is done similarly to simple char. The header
<wctype.h> provides the necessary functions and macros.

Coming back to mbsrtowes, this function parses the multibyte string src into
snippets that correspond to multibyte characters (mbc) and assigns the corresponding
code point to the wide characters in dst. The parameter 1en describes the maximal
length the resulting wes may have. The parameter st ate points to a variable that stores
an eventual parsing state of the mbs; we will briefly discuss this concept a bit later.

As you can see, the function mbsrtowes has two peculiarities. First, when called
with a null pointer for dst, it doesn’t store the wes but only returns the size such a wes
would have. Second, it can produce a coding error if the mbs is not encoded correctly.
In that case, the function returns mbinvalid and sets errno to the value EILSEQ
(see <errno.h>). Part of the code for mbsrlen is a repair of that error strategy by
setting errno to 0 again.

Let’s now look at a second function that will help us handle mbs:

mbstrings.h

mbsrdup:
Interpret a sequence of bytes in s as mb string and convert it to a wide character
string.

Returns: a newly malloc’ed wide character string of the appropriate length, null if
an encoding error occurred.

Remarks: This function can be integrated into a sequence of such searches through
a string, as long as a state argument is passed to this function that is consistent with
the mb character starting in ¢. The state itself is not modified by this function.

state of null indicates that s can be scanned without considering any context.

wchar tx mbsrdup (char constxs, mbstate_txrestrict state);

This function returns a freshly allocated wes with the same contents as the mbs
s it receives on input. Other than for the state parameter, its implementation is
straightforward:

wchar tx mbsrdup (char constxs, mbstate_txrestrict state) {
mbstate_t st = state ? xstate : *MBSTATE;
size t mblen = mbsrlen(s, &st);
if (mblen == mbinvalid) return nullptr;
wchar t+ S = malloc (sizeof (wchar t[mblen+l1]));
/* We know that s converts well, so no error check =/
if (S) mbsrtowcs (S, &s, mblent+l, state);
return S;

After determining the length of the target string, we use malloc to allocate space
and mbsrtowes to copy over the data.

<wctype.h>

<errno.h>
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To have more fine-grained control over the parsing of an mbs, the standard pro-

vides the function mbrtowc:

size_t mbrtowc (wchar txrestrict pwc,

const charxrestrict s, size t len,
mbstate_t+ restrict ps);

In this interface, parameter 1en denotes the maximal position in s that is scanned

for a single multibyte character. Since, in general, we don’t know how such a multibyte
encoding works on the target machine, we have to do some guesswork that helps us
determine 1en. To encapsulate such a heuristic, we cook up the following interface. It
has semantics similar to mbrtowe but avoids the specification of 1en:

mbrtow:

Interpret a sequence of bytes in ¢ as mb character and return that as wide character

through C.

Returns: the length of the mb character or mbinvalid if an encoding error
occured.

This function can be integrated into a sequence of such searches through a string,
as long as the same state argument is passed to all calls to this or similar functions.

Remarks: state of null indicates that ¢ can be scanned without considering any
context.

mbstrings.h

size_t mbrtow (wchar_ t*restrict C, char const c[restrict static
11,
mbstate_t*restrict state);

This function returns the number of bytes that were identified for the first multibyte

character in the string or mbinvalid on error. mbrtowe has another possible return
value, mbincomplete, for the case that 1en wasn’t big enough. The implementation
uses that return value to detect such a situation and to adjust 1en until it fits:

mbstrings.c

size_t mbrtow (wchar_ t*restrict C, char const c|[restrict static

11,
mbstate t*restrict state) {
if (!state) state = MBSTATE;

size t len = -2;

for (size_t maxlen = MB_LEN MAX; len >= mbincomplete; maxlen x*=
2)
len = mbrtowec (C, ¢, maxlen, state);

if (len == mbinvalid) errno = 0;

return len;

Here,MB_LEN_MAX is a standard value that is a good upper bound for 1en in most

situations. Note that this procedure works even if the string ends correctly with a null
character.

Let us now go to a function that uses the capacity of mbrtow to identify mbc and

to use that to search inside a mbs:
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mbstrings.h

mbsrwc:

Interpret a sequence of bytes in s as mb string and search for wide character C.

Returns: the occurrence’th position in s that starts a mb sequence corresponding to
C or null if an encoding error occurred.

If the number of occurrences is less than occurrence the last such position is returned.
So in particular using SIZE_MAX (or —1) will always return the last occurrence.

Remarks: This function can be integrated into a sequence of such searches through
a string, as long as the same state argument passed to all calls to this or similar
functions and as long as the continuation of the search starts at the position that is
returned by this function.

state of null indicates that s can be scanned without considering any context.

char constx mbsrwc (char const s[restrict static 1],
mbstate_t*restrict state,
wchar t C, size_t occurrence);

mbstrings.c

char constx mbsrwc (char const s[restrict static 1], mbstate_t=x
restrict state,
wchar t C, size_t occurrence) {
if (!C || C == WEOF) return nullptr;
state = state ? state : MBSTATE;
char constx ret = nullptr;

mbstate_t st = xstate;
for (size_t len = 0; s[0]; s += len) {
mbstate_t backup = st;
wchar t S = 0;
len = mbrtow (&S, s, &st);
if (!S) break;
if (C == 8S) {
*state = backup;
ret = s;
if (!occurrence) break;
——occurrence;

}

return ret;

14.4. UTF character encodings. As we said, all of this encoding with multibyte
strings and simple 1O works fine if we have an environment that is consistent—that
is, if it uses the same multibyte encoding within your source code as for other text
files and on your terminal. Unfortunately, not all environments use the same encoding
yet, so you may encounter difficulties when transferring text files (including sources)
or executables from one environment to another. In addition to the definition of the
big character table, Unicode also defines three encodings that are now widely used and
that hopefully will replace all others eventually—UTF-8, UTF-16, and UTF-32 for
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Unicode Transformation Format with 8-, 16-, and 32-bit words, respectively. Since
C11, the C language includes rudimentary direct support for these encodings without
having to rely on the 1locale. Character and string literals with these encodings can
be coded with prefixes. For example, ug"text", u"text", and U"text" have types
char8_t[5],charl6_t[5],and char32_t[5], respectively.

Chances are, the multibyte encoding on a modern platform is UTF-8. If so, you
won’t need these special literals and types. They are mostly useful in a context where
you have to ensure one of these encodings, such as in network communication. Life
on legacy platforms might be more difficult; see https://www.nubaria.com/en/

blog/?p=289 for an overview for the Windows platform.

In simpler worlds, we have the correspondance in table 14.4.

TasLE 14.4. Common correspondance between UTF and basic char-
acter types

literal | typedef type encoding | correspondance
u8’a’ | uchar8_t unsigned char UTEF-8 ASCII in char
u’ ! ucharlé_t uint_ leastl6 t UTF-16

urd’ uchar32_t uint_least32 t UTF-32 | "wc"in wchar_t

u8"gl" | uchar8_t[5] unsigned char[5] UTF-8 "mbs" in char [ ]

u""dA" ucharl6_t[3] | uint_leastl6_t[3] | UTF-16
urdn uchar32_t[2] | uint_least32 t([2

1 | UTF-32 | "wcs"in wehar _t[]

O

N O

The situation for UTF-16 is particularly complicated. A string such as u"sl" has
three elements because the code point 0x1D4 9C needs at least 17 bits for its encoding,
so per its definition, it cannot fit into a 16-bit encoding. UTF-16 gets away with what
is called surrogate pairs; that is, such characters are encoded with two 16-bit words (plus
one word for the terminating null character). There is an obsolete encoding called
UCS-2 that comprises those code points that UTF-16 encodes inside a single 16-bit
word. The set of these code points is called the basic multilingual plane (BMP). Other
characters, such as our example u’ ¢f’ , are not in that set and thus not representable
in UCS-2. Try to avoid UTF-16 (and UCS-2) whenever possible. UTF-8 is a very
eflicient multibyte encoder, and UTF-82 is a complete one- word encoding for the
whole Unicode set, so you should prefer them where you can.

Similar to the functions that have wes or mbs in their names, there are also func-
tions with ¢8, c16, and c32 for source or target encoding of UTF-8, UTF-16, and
UTF-32, respectively. Unfortunately, the set of functions is incomplete, and of those
that are there, some only came lately with C23. So, if you are on less recent platforms
or have specific needs, you may struggle a bit to assemble these into something useful.

Another feature that came with C28 is the guarantee that the UTF-16 and UTF-32
are actually the encodings used for char16_t and char32_t; under previous stan-
dards, implementations were allowed to deviate from that. Previously that property
could be tested with feature test macros___STDC_UTF_16___and __ STDC_UTF_32
These are now fixed to the value 1, so the following preprocessor code should never
trigger for modern compilers:

mbstrings.h

#if (__STDC_UTF_16__ != 1) || (__STDC UTF_32__ != 1)
# error "wide character strings,_should use UTF_encodings"
#fendif
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TaBLE 14.5. Text conversion functions of the form XXXrtoYYY

abbreviation | encoding used as XXX | used as YYY
mb locale multibyte encoding buffered unbuffered
we locale wide-character encoding | unbuffered | unbuffered
c8 UTEF-8 buffered buffered
clé UTF-16 buffered buffered
c32 UTF-32 unbuffered | unbuffered

14.5. Restartable text conversion. The functions with the weird XXXrtoYYY
names that we have seen previously have another property: the r in the name stands
for restartable. That is, these functions may receive multibyte strings as input that are
incomplete, collect the state of the input that has been seen so far in a state variable
(pointed to by a st ate parameter), and start to produce output once a complete multi-

byte character has been detected. The following encoding combinations are supported
by C23:

mbrtowc mbrtoc8 mbrtocl6é mbrtoc32
wcrtomb c8rtomb cl6rtomb ¢c32rtomb

Here, the abbreviations for the encodings and supplemental information are given in
table. 14.5. Note that since they are one-character encodings, neither wc nor c32 need
buffering at their end. In general, the other encodings need buffering because the code
points may need several characters. So, the only surprising entry is in the case that mb
appears on the output side.

Takeaway 14.5 #1  The multibyte mb encoding of a code point is written to the output string
all at once.

Buffering on the input side is easily detectable: the functions returnmbincomplete
as long as the input has not yet completed. On the output side, detection of the end of
a write operation is a little bit more subtle:

o A small number indicates that the input gave rise or completed a code point
and the first character of the output has been stored. Whether the output
would need extra characters is not known.

e Subsequent calls to the same functions return mbstored as long as an addi-
tional character of the encoding is stored.

To see this in action, consider the case that we want to scan a multibyte input sequence
that is read from stdin. The code consists of two nested loops that scan the input,
prefixed by some buffer declarations and statements.

analyze-utf8.c

int main (void) {
// Make sure to have the platform’s mb encoding on input.
setlocale (LC_CTYPE, "");
// Holds the state of input/output buffering.
mbstate_t st = { };
// collects the input mb sequence
char ib[23];
// collects the current UTF-8 mb sequence

char8 t ob[5] = { };
// the number of input characters for the current code point
size t in = 0;

while (fgets(ib, sizeof (ib), stdin)) ({
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‘ // Run through the current line. The last character is ‘
‘ // always reserved for the string terminator. ‘
20 ‘ for (charx p = ib; (p—-ib) < sizeof (ib)-1;) { ‘
\ size t const n = sizeof (ib)-1- (p-ib); \

! |

Here, the call to setlocale effectively guarantees that we even see the input as multi-
byte strings. Without it, we would only scan it with the "C" locale, one byte after the
other.

In the body of the inner loop, the input is now given via pointer p, and we write a
UTF-8 output sequence to an output buffer ob.

analyze-utf8.c

29 size_t const r = mbrtoc8(ob, p, n, &st);

23 switch (r) { // Handle the special cases.

24 case mbincomplete: p += n; in += n; continue;

25 case 0: case mbstored: case mbinvalid: goto INVAL;

26 }

27 p += r; in += r;

28 char8_t* cont = ob+l; // first character is already stored
29 while (mbrtoc8 (cont, "", 1, &st) == mbstored) {

30 cont++;

31 }

The goal is to transform the sequence so that we see the boundaries of all complete
code points. We achieve this with several calls to the C library function mbrtocs$;
these calls all use the same mbstate_t variable st. A first call is supposed to return
the number of bytes read from the input to indicate whether the code point has been
completed; the resulting value is accumulated in a variable called in. Then a loop tries
to store a null character into the target buffer until that succeeds—that is, until all bytes
that constitute the UTF-8 sequence have been written.

The switch statement handles the exceptional cases, in particular jumps to an er-
ror handling code at label INVAL (see the following discussion), and it continues looking
for input if the multibyte input sequence is not yet complete. This happens, for exam-
ple, when the input buffer ends in the middle of a multibyte character.

Takeaway 14.5 #2  The multibyte mb encoding of a code point may be collected piecewise
Jfrom the input.

Now that we have the UTF-8 encoding of our code point in the output buffer ob,
we may analyze the result and distinguish the case that we have a single ASCII character.
Here, the end of the input line has to be specially treated because we know that £gets
stops at these points. Also, the comparison has to be done with the proper UTF-8
character for an end of line because this could, in principle, be different from the native
encoding for the platform:

analyze-utf8.c

32 // Now we have the whole UTF-8. Analyze the result.

33 printf ("$s", ((cont-ob) == 1) ? "ASCII\t" : "UTF-8\t");
34 for (char8 t* o = ob; o < cont; ++0) {

35 printf (" |%02hhx", *0);

36 }

37 // fgets stopped at an end of a line

38 if (*ob == u8’\n’) {
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puts (" |[\t~_eol");
in = 0;
break;
} else if (in == (cont-ob)) {
printf (" |\t~_’%s’\n", ob);
} else {

printf (" |\t%zu—%tu\n", in, (cont-ob));

Note that we avoid managing buffers that would have to be resized for long input
lines. The input buffer ib has a constant length and the capacity of mbrtoc8 to store a
parsing state. Restart deals with the problem of reading partial input lines. Here, in this
example, the length 23 of ib is ridiculously small. This is to ensure that we easily cover
the case of splitting a multibyte sequence in half when testing. In production code, the
chosen value would usually be much higher.

The code of the function then ends with the end of the two nested loops, and the
error handling is reachable by the label INVAL:

analyze-utf8.c

}
if (xob != u8’\n’) {
fputs ("incomplete line\n", stderr);

}

return EXIT SUCCESS;
INVAL:

fputs ("input, error, exiting\n", stderr);
return EXIT FAILURE;

14.6. Binary streams. In subsection 8.4, we briefly mentioned that input and out-
put to streams can also be performed in binary mode in contrast to the usual text mode
we have used up to now. To see the difference, remember that text mode 10 doesn’t
write the bytes that we pass to print £ or £puts one to one to the target file or device:

e Depending on the target platform, a  \n’ character can be encoded as one
or several characters.

e Spaces that precede a newline can be suppressed.

e Multibyte characters can be transcribed from the execution character set (the
program’s internal representation) to the character set of the file system un-
derlying the file.

Similar observations hold for reading data from text files.

If the data we manipulate is effectively human-readable text, all of this is fine; we
can be happy that the IO functions together with set Locale make this mechanism as
transparent as possible. But if we are interested in reading or writing binary data just as
it is present in some C objects, it can be quite a burden and lead to serious difficulties.
In particular, binary data could implicitly map to the end-of-line convention of the file,
and thus a write of such data could change the file’s internal structure.

As indicated previously, streams can be opened in binary mode. For such a stream,
all the translation between the external representation in the file and the internal rep-
resentation is skipped, and each byte of such a stream is written or read as such. From
the interfaces we have seen up to now, only £getc and £pute can handle binary files
portably. All others may rely on some form of end-of-line transformation.
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To read and write binary streams more easily, the C library has some interfaces
that are better suited:

size_t fread(voidx restrict ptr, size_t size, size_t nmemb,
FILE+ restrict stream);

size_t fwrite (void constxrestrict ptr, size t size, size_t nmemb,
FILEx restrict stream);

int fseek (FILE*x stream, long int offset, int whence);

long int ftell (FILEx stream);

The use of £read and fwrite is relatively straightforward. Each stream has a
current file position for reading and writing. If successful, these two functions read or
write size*nmemb bytes from that position onward and then update the file position
to the new value. The return value of both functions is the number of bytes that have
been read or written, usually s ize*nmemb, and thus, an error occurs if the return value
is less than that.

The functions ftell and £seek can be used to operate on that file position:
ftell returns the position in terms of bytes from the start of the file, and £seek
positions the file according to the arguments offset and whence. Here, whence
can have one of these values: SEEK_SET refers to the start of the file, and SEEK_CUR,
to the current file position before the call.f

By means of these four functions, we may effectively move forward and backward
in a stream that represents a file and read or write any byte of it. This can, for example,
be used to write out a large object in its internal representation to a file and read it in
later with a different program without performing any modifications.

This interface has some restrictions, though. To work portably, streams have to
be opened in binary mode. On some platforms, 10 is always binary because there is
no effective transformation to perform. So, unfortunately, a program that does not use
binary mode may work reliably on these platforms but then fail when ported to others.

Takeaway 14.6 #1  Open streams on which you use fread or fwrite in binary mode.

Since this works with internal representations of objects, it is only portable between
platforms and program executions that use that same representation—the same endian-
ness. Different platforms, operating systems, and even program executions can have
different representations.

Takeaway 14.6 #2  Files written in binary mode are not portable between platforms.

The use of the type long for file positions limits the size of files that can easily
be handled with ftell and £seek to LONG_MAX bytes. On most modern platforms,

this corresponds to 2 GiB.[Exs 57]

Takeaway 14.6 #3 fseek and ftell are not suitable for very large file offsets.

Under some circumstances, applications have to access chunks of binary data that
are the same for all executions of a program. This may, for example, be the case for
a graphical logo that is shown in a popup window or a binary signature that is to be
included in every object file. Since C23, there is a simple tool to do such an inclusion
of binary data into a source reliably, the #embed directive:

56There is also SEEK_END for the end-of-file position, but it may have platform-defined glitches.

[Exs 57Wwrite a function fseekmax that uses intmax_t instead of long and achieves large seek values by

combining calls to £seek.
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unsigned char logo[] = {

#if defined(__has_embed) && _ has_embed("picture.dat")
# embed "picture.dat"
#else
"embed,_directive_is, missing"
#fendif

bi

On the surface, it works very similar to the #include directive; a file name after
the directive indicates which file is to be included. Also, similar to __has_include,
there isa__has_embed feature that can be used for tests. First, if __has_embed it-
selfis defined, the #embed directive is implemented. Thenif _ _has_embed ("picture.dat")
returns 1 in a preprocessor condition, the file is known to exist and can be embedded.

The file is read as binary data, and the result is as if a long list of comma-separated
numbers were inserted in place. Each byte is represented as the decimal number of
its contents. So, imagine that for relatively large files, this can amount to quite a large
list of incomprehensive numbers. In our previous example, this list of numbers is just
taken as an initializer for the array variable 1ogo. Nevertheless, sophisticated compilers
should implement the #embed directive quite effectively when used for an initializer;
they should be placing the binary data directly into the executable without encoding
and then decoding it to and {rom decimal literals. Let’s look into a more elaborated
example:

PTY\]’\P(“ C

25 |// define a character array that will contain the entire
26 |// source file

27 | static char const here[] = {

28

29 | // Cedro does not work with blanks between the # and any
directive

30 |#pragma Cedro 1.0 embed
31 |#embed "embed.c"

32
33 | };
34
35 |// define another character array that has the same size
36 |static char there[sizeof here];

This snippet defines two character arrays, here and there. As before, if the com-
piler implements the #embed directive, a file is provided as binary data to initialize an
array, here. Additionally, we show a possible fallback that uses a tool called Cedro
(https:/sentido-labs.com/en/library/#cedro) that may help you bridge the gap until
your compiler is up to speed. See appendix B.2 for more information.

The semantics we expect are shown in the corresponding main:

(“mhf“(‘ C
38 |int main (int argc, charx argv[static argc+l]) {
39 size_t ibytes = 0;
40 int cmp = 1000;
41 // Open the file in binary mode.

49 FILEx inp = fopen(_FILE , "rb");

43 if (inp) {

44 // read the file as binary

45 ibytes = fread(there, 1, sizeof there, inp);
46 cmp = memcmp (here, there, sizeof here);
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fclose (inp) ;
} else {
printf ("could_not, open %s\n", _ FILE );
printf ("+4+++HHA A\ )
}
size_t obytes = fwrite(here, 1, sizeof here, stdout);
printf ("++++HHH A\ )
printf ("in_%zu, _out_%zu, bytes_are %$s\n",
ibytes, obytes,
cmp < 0 ? "smaller" : (cmp > 0 ? "greater" : "equal"));

Here, we read the same file (hopefully) in binary mode into the second array
there. The contents of here and there are then expected to be exactly the same,
so the call to mememp should return 0.

CHALLENGE 16 (Text processing in streams). For text processing in streams, can you read
on stdin, dump modified text on stdout, and report diagnostics on stderr? Count the
occurrences of a list of words? Count the occurrences of a regexp? Replace all occurrences of a
word with another?

CHALLENGE 17 (Text processor sophistication). Can you extend your text processor (chal-
lenge 12) to use multibyte characters?

Can you also extend it to do regular expression processing, such as searching for a word, running
a simple query-replace of one word against another, performing a query-replace with a regex
against a specific word, and applying regexp grouping?
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Summary

The Clibrary has several interfaces for text processing, but we must be careful
about const-qualification and buffer overflow.

Formatted input with scanf (and similar) has subtle issues with pointer
types, null termination of strings, white space, and new-line separation. If
possible, you should use the combination of £gets with st rtod or similar,
more specialized functions.

Extended character sets are best handled by using multibyte strings. With
some caution, these can be used much like ordinary strings for input and
output.

Binary data should be written to binary files by using fwrite and fread.
Such files are platform dependent.

Compile time binary data can be initialized efliciently by using the #embed
directive.
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15. Program failure
This section covers

Wrongdoings leading to failure
Degradation of the program state
Unfortunate incidents
Anticipatory error checking
Cleanup

C programs can fail in very different ways—silently, sporadically, predictably, or with
pomp and circumstances. Commonly, much emphasis is put on the things that may
happen when a program fails, and attention is withdrawn from the question #f a pro-
gram fails and why. This is apparent with the term that is often (even falsely) applied
to such situations: undefined behavior. This term even has an abbreviation in the jargon:
UBC. As the term itself suggests, its focus is on the behavior of the program (or, bet-
ter, the whole system) after an error occurred and not on the reasons that lead to the
error. It’s a bit similar to trying to improve road safety by scaremongering drivers with
fines or prison sentences, instead of promoting regular security checks of cars, requiring
licenses, or educating drivers and passengers about the benefits of wearing a seat belt.

We will distinguish three different forms of program failure. The first is the specific
actions (wrongdoings) that directly cause a failure (section 15.1). Second, in some sit-
uations, the state of the executions deteriorates step by step, without one specific action
that can or should be blamed for resulting in program failure (section 15.2). Finally, the
most difficult and complicated situations occur when behavior that is valid in isolation
fails in unfortunate combination from distant parts of the program (section 15.3). At
the end, we briefly discuss how program failures may manifest, which is surprisingly
uncorrelated to the form of the failure (section 15.5).

We will not handle compilation, linkage, or startup failures that, for example, may
lead to invalid executables by linking TU with contradicting declarations (including in-
consistent attributes such as [ [noreturn]]) and using incorrect character or string
constants or using invalid function as an atexit handler. These failures may also only
manifest after a seemingly successful startup of a program that did not notice that it was
doomed long before.

In this chapter, we will continue to draw our examples from a field that is quite
different from computing, but hopefully, it will provide us with enough analogies to
understand the problems: traffic of cars, trains, planes, or rockets. I think that these
provide good examples because the domain is ruled by a similar set of constraints:

e It is described by a multitude of parameters, including space, velocity, accel-
eration, energy consumption, and density.

e It is dynamic. The situation changes from second to second, and what is a
good action in one moment can be catastrophic in the next.

e It draws on a limited number of resources, such as available space, fuel or
electricity, oxygen, time, conductors, cars, and tracks.

e It has multiple objectives, which may include speed, throughput, comfort,
safety, and fun.

e It is ruled by different types of laws, such as physics, penal, societal, and su-
perstition.

A common aspect of the failures that we handle here is that they manifest during pro-
gram execution and that they may occur in situations where they are not detectable at
compile time. Errors that violate the constraints of the language are, in general, diag-
nosed during compilation and are much less of a worry.
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15.1. Wrongdoings. This first category of program failures is certainly the most
easy to comprehend. It comprises actions or events (or the lack thereof) that directly
lead to a failure. In general, if a car veers off a straight alley and hits a tree, we would
blame the driver and suspect they have done something wrong, such as a mismanipula-
tion, speeding, drunk driving, or a similar offense. There is also the slight possibility that
something was wrong with the car or the road, so if there is no obvious other cause, we
could look into that. But only under rare circumstances should the reporter who writes
about the accident, Earth’s rotation, or the old oak tree into which the car smashed be
made responsible for the damages.

15.1.1. Arithmetic violations. Among the possible wrongdoings of a program dur-
ing execution, the simplest category is what the C standard calls an exceptional condition,
which is an operation that uses operands for which no mathematical result is defined.
The most commonly present are probably

e Division by zero
e Modulo by zero

Here, the operations are not mathematically defined for the numbers that we represent.
(For floating-point arithmetic, see the following discussion.)

There are several other operations that are similar but the problems they cause
are linked to the specific way in which we present numbers as finite sets of bits. For
example,

e Negation of INT_MIN or similar negative values

e If the second operand of a bit-shift operation is negative or is greater or equal
to the width of the first operand

e if an attempt is made to bit-shift into the sign bit of a signed integer type

Historically, platforms have deployed quite different strategies for such illicit opera-

tions. A very common one is to crash. The best strategy is to avoid them.

Takeaway 15.1.1 #1  The program execution should only perform arithmetic operations that
are mathematically defined within the range of the underlying type.

Not surprisingly for C, the mathematically defined bit has a special interpretation
when it comes to floating-point arithmetic. If there is a floating-point value for “infin-
ity” on the platform, then division by zero is defined (it results in infinity), and any such
operation is valid. The macro INFINITY in <float .h> (respectively, before C23 in
<math.h>) can also be used to test whether infinity is supported:

fp_except.c

bool const has_inf =
#ifdef INFINITY
(1.0/0.0 == INFINITY)
#else
false
#endif

r

The header <fenv . h> (for “floating-point environment”) has several macros that
encode exceptional floating-point conditions such as division by zero:

fp_except.c

iint excepts[] = {

' #ifdef FE DIVBYZERO
| FE_DIVBYZERO,
‘#endif

<float.h>
<math.h>

<fenv.h>
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#ifdef FE_INEXACT
FE_INEXACT,

#endif

#ifdef FE_INVALID
FE_INVALID,

#endif

#ifdef FE_OVERFLOW
FE_OVERFLOW,

#endif

#ifdef FE_UNDERFLOW
FE_UNDERFLOW,

#endif

bi

As you might guess {from the names of these exceptions, not all of them concern
possible arithmetic violations. We will see some more in the following discussion.
These constants can be used as bitsets; or-ing them into one integer value can be used
to manage combinations of these exceptional conditions.

In our traffic examples, an invalid operation would be driving fast and then step-
ping violently on the brakes. If you have a not-so-sophisticated car (a platform without
INFINITY), you will very likely run off the road and hit the tree. If you have a car with
an anti-lock braking system (ABS) (a platform handling FE_DIVBYZERO), you may
be lucky and stay on the road. In neither circumstance is speeding and then braking
violently a good idea

The supported floating-point exceptions usually do not result in program failures,
and the header has interfaces (here, fetestexcept and feclearexcept [floating-
point environment test clear exception]) that allow you to query or manage such an
exception:

fp_except.c

void printexcept (void)
char constx name[] =
#ifdef FE DIVBYZERO
"divbyzero",
#endif
#ifdef FE INEXACT
"inexact",
#endif
#ifdef FE_INVALID
"invalid",
#endif
#ifdef FE_OVERFLOW
"overflow",
#endif
#ifdef FE_UNDERFLOW
"underflow",
#fendif
}i
int except = fetestexcept (FE_ALL_EXCEPT) ;
if (except) {
printf ("[");
for (unsigned j = 0; except; except &= ~excepts[]j], ++3)
if (excepts[j] & except)
printf ("%$s_", name[j]);
printf("]");
}

{
{
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int main (int argc, charx argv([static argc+1l]) {
printf ("division by, zero_is, %$sequal to INFINITY\n", has_inf ? "
" . "un") ,.

for (unsigned i = 1; 1 < argc; i++) {
feclearexcept (FE_ALL_EXCEPT) ;
double x = strtod(argv[i], nullptr);
printf ("%g._", x);
printexcept () ;
feclearexcept (FE_ALL_EXCEPT) ;
printf(": %g..", 1.0/x);
printexcept () ;
puts ("");

Takeaway 15.1.1 #2  The floating-point environment of the platforms determines the floating-
point operations that result in program failure.

So, the portability of numerical programs that use floating-point operations that
might or might not fail is a real concern and must be carefully handled with feature
tests.

Another set of arithmetic operations that might fail are those that operate on pointer
values. In fact, the naive representation of pointers as integers-in-disguise is not the
whole story. Because of address space segmentation, addition or comparison of pointer
values can be much more restricted than those for similar operations on integers. Prob-
lematic are

e Address addition or subtraction with an integer that overflows the array bounds;
e Pointer comparison if not pointing into the same array object

Here, the operation itself might already be invalid, even if the theoretical result repre-
sents a valid address.

Takeaway 15.1.1 #3  Pointer manipulations should always stay within the boundaries of an
array object.

In general, it is much better to express an intent of reading a specific element of an
array (either accessed directly or via a pointer) by using array indexing A[i] instead
of explicit arithmetic = (A+1). Modern compilers might capture invalid indices more
easily then.

Takeaway 15.1.1 #4  Where possible, use array indexing instead of pointer arithmetic com-
bined with dereferencing.

There is another pointer arithmetic operation—namely, pointer subtraction— that
depends on the pointers pointing into the same array object. Here, the two pointer
values can even have different status during the same program run. If they happen
to be within the same array, they are valid; if the target buffers are later recycled and
point to different array objects, the same operation with exactly the same values may
be erroneous.

Similar to pointer arithmetic, relational operators (<, <=, >=, >) require that both
operands point into the same array.

Pointer subtraction also depends on the representation of types. If the result doesn’t
fit into ptrdif£_t, the operation is erroneous. This could happen on platforms with
a very restricted integer type for ptrdiff_t (for example, just 16 bits). There, the
maximum distance between two pointers that is supported is +32,767 whereas the size
of objects may be larger.
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15.1.2. Invalid conversions. Invalid conversions occur when a certain value does
not have a good interpretation in a type that is different from the one it had been given
initially. Remember that if the target type is an unsigned type, conversion always works
with the modulus, and so the result is always well defined. For all other target types,
there may be errors, for example,

o Invalid conversions from one integer type to a signed type—For example converting
the value UINT_ MAX into a signed. The result is implementation-defined:
some implementations may use the bit pattern of the unsigned value, whereas
others may stop the execution. So, although this is well-defined individually
by each implementation, such behavior is not portable, and you should con-
sider such situations as erroneous.

o Invalid conversions between floating-point values and integers—For example, a
floating-point value may be out of the range of a target integer type, or a
big integer value may have much more precision than a floating-point type
can handle.

o Invalid conversions between different floating-point types—Here, precision may
get lost, or the source value may be out of the value range of the target type.

o Conversion of a pointer into an integer that exceeds the necessary bits—This can only
happen for integer types that are narrower than the width of the pointer type.
If the target type is uintptr_t (and, thus, that type exists), the conversion
is always defined.

o Conversion of a pointer to a pointer of a different type—This occurs when the
source pointer is not properly aligned for the target type.

Again, all these failures occur directly at these operations, regardless of whether the
result value of the conversion is used. On the other hand, if such a conversion is valid,
it does not necessarily mean that the resulting value can be used freely. For example, a
successful pointer to pointer conversion does not indicate that the object to which the
new pointer refers can be accessed through the new pointer value (see the following
discussion).

15.1.8. Value violations. Another large range of possible program failures caused
by wrong values is calls to functions in the C library. A lot of them have the notion of

e Invalid values that are not allowed for the call arguments (such as null point-
ers, numbers that are too large, or zero sizes for allocation functions)
e Values such that the result of the requested operation is not representable.

Modern compilers and some static analyzer tools may be sophisticated enough to detect
some of these violations. But, in general, you'd have to read the specifications carefully
to detect such situations.

15.1.4. Type violations. C has a relatively strict type system that makes accessing
objects or functions with the wrong type erroneous in most cases. Such accesses, both
for objects and functions, can only happen when we convert pointers to pointers of
a different type. So, the easiest way to inhibit this kind of failure is to avoid these
operations.

Takeaway 15.1.4 #1  Don’t convert pointers unless you must.
We already have seen the rules for accessing objects through a different type (see

section 12.6).
For calling a C function, the rule is quite simple.

Takeaway 15.1.4 #2  Always call a function with the prototype with which it is defined.
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One possible way to call a function with a different prototype is to form a function
pointer and then cast the function pointer value to a different type. The effect is a
bit like for a train system that has a certain track width. If you give your locomotive a
specification of a different track width than it has in reality; even carefully inscribing that
lie in the paperwork and the front panel does not change the facts. If the specifications
are relatively close (say, they deviate by some millimeters), you would perhaps be able
to run the locomotive initially for a few meters, just to have it derail at the first curve or
switch.

The simplest way to avoid that situation is not to use function pointers in the first
place or, if you have to, never to cast the type away.

Takeaway 15.1.4 #3  Call a function by its name.

Another possibility is that in different translation units the same function name is
used with different prototypes. In that case, any execution that stumbles upon a call to
this function fails.

15.1.5. Access violations. Access violations are probably the most common failures
of C programs that directly stem from wrongdoings. The different cases are numerous,
and for most of them, the consequences of erroneous access can be catastrophic. Here,
an analogy for car traffic is a No Entry sign: it is easy to enter a road that is only pro-
tected by such a sign; there is no direct enforcement, but the result of doing so can be
disastrous.

In C, generally, such access violations are performed through pointers or arrays
because, otherwise, the strict type system would already enforce a diagnosis at com-
pilation time. The following list shows the particular responsibility that programming
with pointers implies:

e Null pointer dereference

e Accessing a missing object (for example, through a stale pointer to a local vari-
able), freed storage, or a system object that changed, such as a locale pointer

e Modifying and reading the same object from unsequenced subexpressions

e Out-of-bounds accessing of an element directly after an arrayf

e Modifying of an unmutable object (const-qualified object, string literal, tem-
porary object)

e Accessing a volatile object from a non-volatile lvalue

e Accessing an object based on a restrict pointer through an lvalue not
based on the same pointer

e Accessing a member of an atomic structure or union

e Storing from an overlapping object (= operator, scanf, memcpy)

e Attempting to access an element of a flexible array member with no elements
(see 13.1.3)

e Accessing a function without corresponding properties through an attributed
prototype

e Issuing a call to longjmp initialized from a function context that is dead

e Returning from a signal handler for a computational exception

e Calling £ree for an already freed pointer

For all these potential cases of access violations, the user code is expected to keep track
of the necessary conditions that allow access or, where possible, add tests that inhibit
access violations.

58As previously seen, for other positions relative to an array, forming the pointer is already erroneous.
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15.1.6. Value misinterpretation. A value misinterpretation occurs when an object
stores a bit pattern that has no known valid interpretation as the type with which it is
accessed. C23 calls this an indeterminate representation.

The most important case of interpretation of values going wrong is when there is
not yet one—that is, when the program accesses storage that has not yet been initialized.
The possibilities for this to occur are variables inside a function that are defined with-
out being initialized (see takeaway 5.5 #1) and dynamic allocations that use malloc
instead of calloc. We will discuss these problems in more detail in section 16.

Another case is object types in which not all possible bit patterns represent a valid
value, called non-value representation,’® There are standard types that, by definition,
have more representation bits than necessary for their value range, including bool,
atomic_flag, and _BitInt (N) types where N is not a multiple of CHAR_BIT.
For example, bool has only two proper values (false and true) but at least 8 bits.
Setting other bits than the least significant can lead to a misinterpretation of a Boolean
value. In some contexts, it might be convenient for the compiler to test for the all-zero
bit pattern; in other contexts, it may just inspect the least significant bit.

So, messing around with the representation bytes of a bool object may cause se-
vere damage:

Takeaway 15.1.6 #1  Don’t store values other than 0 or 1 in a bool object.

Also, standard types other than those previously listed (such as floating-point types)
may have non-value representations, but nowadays, this is relatively rare. Nevertheless,
it is also good to be cautious.

Takeaway 15.1.6 #2  Don’t change the representation bytes of objects directly.

15.1.7. Explicit invalidation. C23 has introduced a new tool to annotate possible
failure, the unreachable macro. An invocation asserts that this control path in any
execution will never be reached. Consider the following function:

ptrdiff t ptr_dist (void constx p, void constx q) {
if (!p || !g) unreachable();
unsigned char const*x P = p;
unsigned char constx QO = g;
return P - Q;

Here the conditional and the invocation of unreachable () indicate that this
function will never be reached with null pointers as parameter values. Unfortunately,
for void pointers, there is currently no way to augment the prototype of the function
with that information, so the user is completely on their own to guarantee that this never
happens.

Takeaway 15.1.7 #1  Only use unreachable () where you have proof.

In particular, try to avoid relying on external information for this kind of assess-
ment whenever this is possible. In the previous example, you would be better off using
array parameters with bounds to indicate that none of the pointers may be null and
even help the compiler determine that property at the calling site:

|
‘ [ [maybe_ unused] ]

\static inline
‘ptrdiff_t ptr_dist_uchar (unsigned char const pl[static 1],

59Before (€28, these were called trap representation.
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unsigned char const g[static 1]) {
if (!p || !qg) unreachable();
return p - g;
}
#define ptr_dist (P, Q) \
ptr_dist_uchar ((void const~*){ (P), }, \
(void constx){ (Q), })

An invocation of unreachable is different from any other operation that puts the
execution in an undefined state or explicitly ends execution. Other operations (often,
division by zero) may have definitions that are provided by a different entity than the C
standard— for example, the compiler implementation or the operating system or ex-
plicit program termination using exit or abort yet having other prescribed behavior,
such as cleaning up or raising a signal. None of that is equivalent to telling the compiler
that execution will never go here. Compare that to the difference between indicating
that a street is a dead end and there’s no street at all.

Takeaway 15.1.7 #2  Don’t use other operations than unreachable () to mark a control
path that will never be taken.

Also, it is important to notice that not the invocation of unreachable itself is the
wrongdoing here. The real error is the decision that leads to it and not the invocation

itself. The consequences of going down the rabbit hole shouldn’t be blamed on the
rabbit.

15.2. Program state degradation. Program state degradation is a problem that is
much more difficult to tackle than wrongdoings because it cannot be blamed on one
individual or action; instead, it’s the result of the interplay of several actions. If you
find yourself in a traflic jam, you shouldn’t blame that situation on the driver of the car
in front of you. All cars equally contribute to the degraded situation: there may be just
too many of them for the given road capacity. As seen at some time on a bridge in
Berlin under which there were daily traffic jams, “It isn’t that you are in a traffic jam;
you are the traffic jam.”

15.2.1. Unbounded recursion. Aswe have seen in section 7.8, an important example
of program state degradation is recursion. If we do not have a good notion of progress
from one call into the next and do not define the condition for the bottom of the recur-
sion well enough, the execution will crash eventually because the resources for function
calls are exhausted. Always remember takeaway 7.3 #2 to ensure you avoid this
situation.

15.2.2. Storage exhaustion. The resource that is usually exhausted when there is
unbounded recursion is the capacity of the platform to provide function call contexts.
Usually, this resource is called the stack’ because the addition and removal of function
call contexts acts like a stack data structure; a call pushes a new context onto this stack,
and a return pops the current context off. So, unbounded recursion is a special case of
stack overflow®: at some point, the limited resources of the stack is not able to provide
enough space to store the new execution context.

Another form of stack overflow happens when function contexts are established
that have variable length arrays. Here, since the size of the object dynamically depends
on array bounds, it is difficult to estimate how much storage is available and how fast the
program state may degenerate. Note, though, that this problem only occurs for VLA
themselves, not for other variably modified (VM) types. On the other hand, using
VLA instead of a large constant-length array may reduce the stack usage substantially.
Nevertheless, VLA still have somewhat of a bad reputation in parts of the C community;
consequently, VLA (in contrast to VM types) are still an optional feature in C23, tested
by the macro __STDC_NO_VLA__.
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TaBLE 15.1. Scarce execution resources

Resource ‘ Reservation ‘ Release Limits
call context va_start va_end

va_copy
stream fopen fclose FOPEN_MAX

tmpfile TMP_ MAX
file fopen remove

freopen
thread context thrd_create | thrd_join

thrd detach

mutex mtx_init mtx_destroy
condition variable cnd_init cnd_destroy
thread-specific storage | tss_create | tss_delete

Whereas the C standard provides no tool to foresee the exhaustion of the stack, the
exhaustion of the other storage system of the C library, usually called the heap®, can be
detected. The standard functions that allocate memory (malloc, calloc, realloc,
aligned_alloc, strdup, and strndup) return a null pointer on failure. Still, such
a failure should not necessarily be blamed on the call itself; there may have previously
been just too many such calls. Still, such a situation is preferable to a silent degradation
of the execution state since it allows shutting down the execution in a controlled way.

15.2.8. Other scarce resources. In addition to storage, the runtime environment of
a program execution commonly has other scarce resources that may be exhausted (see
table 15.1). Usage of these resources accumulates if none of the functions listed under
“release” are called. Note that the function fopen reserves two different resources: a
stream (to which a pointer is returned) and a file (which is indicated by the first argu-
ment). Most of the functions that reserve the resource also have a failure mode that
makes it possible to detect exhaustion of the resource. Unfortunately, two of them,
va_start and va_copy, do not provide that information.

15.3. Unfortunate incidents. Whereas wrongdoings and resource exhaustion are
failures that (at least in theory) can be captured locally, unfortunate incidents are caused
by the alignment of distant events in space or time in a way that causes the execution to
fail. Generally, these incidents are rare and difficult to track.

A good traffic model for this kind of failure is collisions. In a world without traffic
lights or air controllers, two cars or two planes that prospect their trajectory indepen-
dently from each other may collide at a location quite far from the location at which they
planned their trajectory. Because both are not able to look around the corner (or are
within each other’s blind spot), each of them sees the resource as uncongested. When
they approach the danger zone (a crossing), their readjustment might be too slow, and
they might crash into each other.

15.3.1. Escalating state degradation. One of the most common types of unfortu-
nate incidents actually happens after state degradation. For example, if stack or heap
exhaustion has occurred and the program execution continues, the program state de-
grades in a way that causes the system to react erratically, potentially causing harm even
outside the realm of the current execution.

This situation is similar to when the indicator light for a brake malfunction of your
car lights up. If you slow down now, you may save the lives not only of yourself and your
fellow passengers but also of innocent bystanders who happen to be in the trajectory of
your car. Be a responsible citizen.
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15.8.2. Collisions and race conditions. When modifying objects, a C program usu-
ally does not have to take care that another part of the program execution simultane-
ously changes that object. The underlying property is sequencing (see section 4.6). It is
important not to ask too much of the compiler.

Takeaway 15.8.2 #1  Don’t read and modify the same object within the same arithmetic
expression.

A typical example is subexpressions with side effects; we already previously listed
them as wrongdoings:

| ]
| printf("$11d\n", x++ + x); // Don’t do that!
L |

If this is not detected as a failure, the operation of updating variable x could happen
before, after, or while x is read the second time. For these cases, the value printed may
be twice the initial value, this value plus 1, or some weird value that has the upper and
lower words from different phases of the computation. The problem is that expressions
can be complicated, and the compiler might not be able to detect the unsequenced
access. However, as long as we use an object through its variable name, these failures
are just the result of wrongdoings.
When dealing with pointers, the situation is more complicated:

| |
‘ printf ("$11d\n", (*p)++ + (xq)); // Are xp and xq different? ‘

By coincidence, such an expression could have p == g, and thus *p and g would
refer to the same object. So, setting p to a particular value in one corner of the code
and then g at a completely different spot may have a fatal outcome at a third, completely
unrelated point We will provide more details in sections 12.3 and 19.2.

The previously described situation could still, in principle, be guarded by testing
p == g beforehand, thus avoiding the unsequenced accesses. But there are similar
situations that cannot be tested, so-called race conditions. They can occur when a signal
handler (discussed in section 19.6) and the code it interrupts access the same object.
Here, access to an object a signal handler makes is unsequenced to the rest of the pro-
gram execution. Consequently, such accesses must fulfill special conditions and use
special mechanisms to be valid. Similar problems arise when different threads of exe-
cution access the same object concurrently (section 20).

15.8.8. Inappropriate library calls and macro invocations. Some functions in the C
library are restricted to specific contexts in which they may be called. For example,
calling signal in a multithreaded program is not allowed. The function that uses
signal might, under some circumstances, be linked to a program that uses threads. If
so, the whole execution might be jeopardized if a signal occurs in a program that uses
threads.

Another example is the set jmp macro, which we will see in more detail in sec-
tion 19.5; itis only allowed to appear in very specific places within expressions. Whereas
a quality implementation would probably diagnose a placement of a macro invocation
to set jmp that it can’t handle, a less sophisticated implementation might not. So, for
portability, the safest bet is to adhere to the restrictions imposed by the C standard.

15.3.4. Deadlocks. A deadlock failure occurs when several entities
try to access resources and get trapped in a cyclic chain of dependen-
cies. In the world of road traffic, a roundabout is a perfect example of a
strategy for resolving resource conflicts that can go wrong. It is an ap-
pealing strategy to resolve local resource conflicts: if cars entering the
roundabout have lower priority than cars already inside, any race con-
dition for access to a place within the roundabout is avoided. This is
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probably the reason why all over Europe roundabouts are now everywhere: they avoid
resource conflicts (and thus car crashes) at a relatively low cost.

This strategy works well when there is not too much traffic, but unfortunately, un-
der high congestion, it breaks down completely. As the traffic sign for a roundabout
illustrates, if the roundabout is filled with cars that are proceeding to the subsequent
exit, none of them can move, and no progress is possible. Therefore, roundabouts are
usually not found in highly congested environments such as cities, where crossings with
traffic lights are used instead.

Fortunately, when programming with C, deadlocks can only appear in a multi-
threaded context (see section 20). Proving that a particular multithreaded program has
no deadlocks is a difficult task that we cannot tackle to a satisfactory extent in the frame
of this book. Nevertheless, we will provide some directions in section 20.7 with a case
analysis of a particular example.

15.4. Series of unfortunate events. A particularly nasty type of failure is pro-
gram executions that continue endlessly over a finite set of states without making visible
progress.

Takeaway 15.4 #1 A program execution that loops over a finite set of states with no observ-
able side effects has failed.

The situation is a bit like that of a plane circling in the eye of a storm. The im-
mediate situation does not look particularly dangerous. But for the outside world, the
plane may be accounted as being lost. The exact point of the inevitable crash, past or
future, is not very important because we will never see the plane again.

In section 5.7.5, we have already seen an example of a loop that might not present
enough progress. Let’s look more closely at the possibilities by modifying the previous
example:

void obscure (unsigned) ;

for (unsigned i = 0; true; i++) {
obscure (1) ;
}

unreachable () ;

Whether such a loop fails depends on the function cbscure. With the specifica-
tion as given, a compiler cannot decide whether this loop will lead to systematic failure.
Depending on the value of 1, the function could have a visible side effect, for example,

e Does some 10
e Changes some global state
e Calls exit.

So, although this £or loop has no obvious termination, it does not indicate systematic
failure. The compiler could only assume that if it had additional information about
the function—for example, if the function were annotated by a [ [unsequenced] ]
attribute—it then might give some diagnosis. Otherwise, it is the programmer’s re-
sponsibility to ensure that obscure makes progress for at least one value of i. In any
case, the loop can only terminate by exiting the whole execution, and the invocation of
unreachable will never be reached.

If we change the type of i from unsigned to signed, the loop is not even an
infinite loop anymore:

[
\ for (signed i = 0; true; i++) {
‘ obscure (1) ;

}
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\ unreachable () ; \
L |

Here, the compiler may assume that for one positive value of i, a program termination
happens; otherwise, for a value of INT_MAX, an arithmetic exception would occur.

Unbounded recursion may also be a special case of a program that lacks progress.
In fact, for some recursive functions, the compiler may detect that no state has to be
saved per individual call. A call to such a function with unbounded recursion may then
be replaced by a loop that makes no additional allocation. Similar to the loop, a good
compiler could then warn that a recursive call leads to systematic program failure.

An even more complicated failure type, caused by a series of unfortunate events,
may occur for threaded programs: livelocks. Their effects are similar to the deadlocks
we discussed previously (basically, nothing seems to happen), but the interaction of the
components of a program with a livelock is more complicated. An analogy can be a big
traffic system with detours that form a cyclic pattern. Consider the four crossings on
the corners of a city block with detours as indicated in figure 15.1. While each detour
by itself may seem to be a good idea, the whole set forms a trap.

A )]
10

.

.
N N

Ficure 15.1. A configuration potentially leading to a livelock

Any vehicle that reaches one of the crossings will circle the block forever. Even if
there is only one vehicle, at each instance, it will appear as if traflic advances as it should,
but the vehicle will never escape the vortex.

This is only a very simple example of a livelock. There could be multiple cars
involved, and the detours could send the cars all over the city. Depending on which
order vehicles arrive and how fast they are going, they may even switch order at some
point or go different routes without ever escaping. Such situations are much more
difficult to detect and prevent. The case analysis in section 20.7 will show how to prove
the absence of a livelock for a practical case.

15.5. Dealing with failures. Failure of a C program can have different indications
or, in some cases, pass completely unnoticed. The easiest way to deal with failures is,
in fact, to avoid them.

Takeaway 15.5 #1  Ensure all preconditions for an operation that could fail.

That is, all the failures listed under wrongdoings in (15.1) should not occur during
a normal program execution. The preconditions should be tested, and an alternative
should be executed. Ensuring all preconditions is probably not always easy, but the
general strategy should be as described.

Similarly, in general, program state degeneration should be detected, but this time,
it is only possible to do that after the fact.

Takeaway 15.5 #2  The return of operations that might exhaust resources should be checked
Jor errors.
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There are, in general, two indicators for such errors: error returns for C library
functions (see section 8.1.3) and a nonzero value of errno. We will see strategies on
how to deal with these in section 15.6.

Unfortunate incidents are much, much more difficult to handle. By their nature,
they do not have many indicators to detect the situation. Nevertheless, modern systems
have some features that may limit the damage done to the system:

Signals are an archaic and arcane mixture of hardware and software features
that interrupt a program execution at a given point and allow users to provide
fallback code, which is then executed to save the day (see section 19.6).

A trap is similar because it immediately interrupts the flow of the execution.
In contrast to a signal, execution just ends; whether there is at least some
cleanup depends a lot on the system.

C provides termination functions for program executions—namely exit,
quick_exit, Exit, and abort, as we have already seen in section 8.8.
The cleanup depends on the function and ranges from user-defined cleanup
functions (for exit and quick_exit) to almost none (for abort).
Similarly, threads can be terminated in isolation using thrd_exit. We will
see that in section 20.6.

Last but not least, after byzantine failure execution continues, and the system
state degrades more and more. There is no possibility to capture the failure.
Damage to the whole system may be severe, sensitive information may get
lost, and catastrophic actions in the physical world may be set in motion.

Takeaway 15.5 #3  Unfortunate events can only be avoided with a careful algorithm design.
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15.6. Error checking and cleanup. C programs can encounter a lot of error con-
ditions when we test for the preconditions of an operation or a valid outcome of a
C library call. Errors can be programming errors, bugs in the compiler or OS software,
hardware errors, resource exhaustion (such as out of memory), or any malicious com-
bination of these. For a program to be reliable, we have to detect such error conditions
and deal with them gracefully.

As a first example, take the following description of a function fprintnumbers,
which continues the series of functions that we discussed in subsection 14.1. As you can
see, this function distinguishes four different error conditions, indicated by the return
of negative constant values. The macros for these values are generally provided by
the platform in <errno.h>, and all start with the capital letter E. Unfortunately, the
C standard imposes only EOF (which is negative) and EDOM, EILSEQ, and ERANGE,
which are positive.

numberline.c

fprintnumbers:

print a series of numbers nums on stream, using print £ format form, separated by
sep characters and terminated with a newline character.

Returns: the number of characters printed to stream, or a negative error value on
error.

If len is 0, an empty line is printed and 1 is returned.

Possible error returns are:

e EOF (which is negative) if stream was not ready to be written to

e —EOVERFLOW if more than INT_ MAX characters would have to be writ-
ten, including the case that len is greater than INT MAX.

e —EFAULT if stream is a null pointer

e —EFAULT if numb is a null pointer and len is not zero

e —ENOMEM if a memory error occurred

This function leaves errno to the same value as occurred on entry.

int fprintnumbers (FILExrestrict stream,
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len, size_t numb[restrict len]);

Other error values may or may not be provided. Therefore, in the initial part of
our code, we have a sequence of preprocessor statements that give default values for
those that are missing:

numberline.c

#include <errno.h>

#ifndef EFAULT

# define EFAULT EDOM

#endif

#ifndef EOVERFLOW

# define EOVERFLOW (EFAULT-EOF)

# if EOVERFLOW > INT MAX

# error EOVERFLOW constant is too large
# endif

#endif

#ifndef ENOMEM

# define ENOMEM (EOVERFLOW+EFAULT-EOF)

<errno.h>
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Listing 15.1. Print an array of numbers

int fprintnumbers (FILExrestrict stream,
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len, size_t nums[restrict len]) {
if (!stream) return -EFAULT;
if (len && !nums) return -EFAULT;
if (len > INT MAX) return -EOVERFLOW;

size t tot = (len ? len : 1)sxstrlen(sep);
int err = errno;
char*x buf = nullptr;

if (len) {
/* Count the chars for the numbers. =*/
for (size_t i = 0; i < len; ++1i)

tot += snprintf (nullptr, 0, form, nums([i]);
/* We return int so we have to constrain the max size. */
if (tot > INT MAX) return error_cleanup (EOVERFLOW, err);

buf = malloc (tot+1);
if (!buf) return error_cleanup (ENOMEM, err);

sprintnumbers (tot, buf, form, sep, len, nums);
/+ print whole line in one go */

if (fputs(buf, stream) == EOF) tot = EOF;

free (buf) ;

return tot;

# if ENOMEM > INT MAX

# error ENOMEM constant is too large
# endif

#fendif

The idea is that we want to be sure to have distinct values for all of these macros.
Now the implementation of the function itself looks as in the following listing 15.1.

Error handling pretty much dominates the coding effort for the whole function.
The first three lines handle errors that occur on entry to the function and reflect missed
preconditions or, in the language of Annex K (see subsection 8.1.4), runtime constraint
violations® .

Dynamic run-time errors are a bit more difficult to handle. In particular, some
functions in the C library may use the pseudo-variable errno to communicate an error
condition. If we want to capture and repair all errors, we have to avoid any change to
the global state of the execution, including to errno. This is done by saving the current
value on entry to the function and restoring it in case of an error with a call to the small
function error_cleanup

The core of the function computes the total number of bytes that should be printed
in a for loop over the input array. In the body of the loop, snprint£ with a null
pointer and a buffer size of 0 are used to compute the size for each number. Then our
function sprintnumbers from subsection 14.1 is used to produce a big string that is
printed using £puts.
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static inline int error_cleanup (int err, int prev) {
errno = prev;
return -err;

Observe that there is no error exit after a successful call to malloc. If an error
is detected on return from the call to £puts, the information is stored in the variable
tot, but the call to £ree is not skipped. So, even if such an output error occurs, no
allocated memory is left leaking. Here, taking care of a possible 10 error was relatively
simple because the call to £puts occurred close to the call to £ree.

The function fprintnumbers_opt requires more care (see listing 15.2). It tries
to optimize the procedure even further by printing the numbers immediately instead
of counting the required bytes first. This may encounter more error conditions as we
go, and we have to take care of them by guaranteeing to issue a call to £ree at the
end. The first such condition is that the buffer we initially allocated is too small. If the
call to realloc to enlarge it fails, we have to retreat carefully. The same is true if we
encounter the unlikely condition that the total length of the string exceeds INT_MAX.

LisTING 15.2. Printing an array of numbers, optimized version

int fprintnumbers_opt (FILExrestrict stream,
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len, size_ t nums|[restrict static len]) {
if (!stream) return -EFAULT;
if (len && !nums) return -EFAULT;
if (len > INT_MAX) return -EOVERFLOW;

int err = errno;
size_t const seplen = strlen (sep);

size t tot = 0;
size_t mtot = lenx (seplen+l0);

charx buf = malloc (mtot) ;

if (!buf) return error_cleanup (ENOMEM, err);

for (size t i = 0; i < len; ++i) {
tot += sprintf (¢buf(tot], form, nums[i]);
++i;

if (i >= len) break;
if (tot > mtot-20) {
mtot x= 2;
char* nbuf = realloc (buf, mtot);

if (nbuf) {
buf = nbuf;
} else {

tot = error_cleanup (ENOMEM, err);
goto CLEANUP;

}
memcpy (&buf[tot], sep, seplen);
tot += seplen;




238
239
240
241
242
243
244
245
246
247
248
249
250

260 2. COGNITION

if (tot > INT_MAX) {
tot = error_cleanup (EOVERFLOW, err);

goto CLEANUP;
}
}
buf[tot] = 0;
/* print whole line in one go */
if (fputs(buf, stream) == EOF) tot = EOF;
CLEANUP:

free (buf) ;
return tot;

In both cases, the function uses goto to jump to the cleanup code that then calls
free. With C, this is a well-established technique that ensures that the cleanup takes
place and avoids hard-to-read nested if-else conditions. The rules for goto are
relatively simple.

Takeaway 15.6 #1 Labels for goto are visible in the entire function that contains them.
Takeaway 15.6 #2 goto can only jump to a label inside the same function.

Takeaway 15.6 #3  goto should not jump over variable initializations.

The use of goto and similar jumps in programming languages has been subject to
intensive debate, starting from an article by Dijkstra [1968]. You will still find people
who seriously object to code as it is given here, but let us try to be pragmatic about
that: code with or without goto can be ugly and hard to follow. The main idea is to
have the “normal” control flow of the function be mainly undisturbed and to clearly
mark changes to the control flow that only occur under exceptional circumstances with
agoto or return. Later, in subsection 19.5, we will see another tool in C that allows
even more drastic changes to the control flow, set jmp/longjmp, which enables us
to jump to other positions on the stack of calling functions.
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Summary

Program failure can originate in wrongdoing, program state degradation, or
an unfortunate incident.

e Possible wrongdoings can be avoided by carefully checking preconditions.

e Calls to C library functions that may lead to state degradation should be
checked for error returns.

There is no cure for unfortunate incidents. You must ensure they don’t ap-
pear by using a careful program design.

Handling error conditions can lead to complicated case analysis. It can be
organized by a function-specific code block to which we jump with goto
statements.






LEVEL 3

Experience

The alpine chough lives and breeds in the thin air of high altitudes and has
been seen above 8,000 m in the Himalayas.

In this level, we go more deeply into details about specific topics. The first, perfor-
mance, is one of the primary reasons C is chosen over other programming languages.
Therefore, section 16 is a mandatory read for all C software designers.

The second topic is a feature quite specific to C: function-like macros. Because
of their complexity and obvious ugliness, they are much frowned upon by other pro-
gramming communities. Nevertheless, it is important to master them to a certain extent
because they allow us to provide easy-to-use interfaces—for example, for type-generic
programming and more sophisticated parameter checking.

Sections 19 and 20 then show how the usual assumption of sequential program ex-
ecution can be weakened to allow for asynchronous problem handling (with long jumps
or signal handlers) or the parallel execution of threads. These come with specific prob-
lems related to guaranteeing data consistency, so we conclude with section 21, which
dives more deeply into the handling of atomic data and synchronization in general.
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16. Performance

This section covers
e Writing inline functions
e Restricting pointers
e Measuring and inspecting performance

Once you feel more comfortable when coding in C, you will perhaps be tempted to do
complicated things to “optimize” your code. Whatever you think you are optimizing,
there is a good chance you will get it wrong: premature optimization can do a great deal
of harm in terms of readability, soundness, maintainability, and so on.

Knuth [1974] coined the following phrase that should be your motto for this whole
level.

Takeaway 16 #1  Premature optimization is the root of all evil.

C’s good performance is often cited as one of the main reasons it is used so widely.
While there is some truth to the idea that many C programs outperform code of similar
complexity written in other programming languages, this aspect of C may come with a
substantial cost, especially concerning safety. This is because C, in many places, doesn’t
enforce rules but places the burden of verifying them on the programmer. Important
examples of such cases are
Out-of-bounds access of arrays
Accessing uninitialized objects
Accessing objects after their lifetime has ended
Integer overflow

These can result in program crashes, loss of data, incorrect results, exposure of sensitive
information, and even loss of money or lives.

Takeaway 16 #2 Do not trade safety for performance.

C compilers have become much better in recent years; basically, they complain
about all problems that are detectable at compile time. But, severe problems in code
can still remain undetected in code that tries to be clever. Many of these problems are
avoidable, or at least detectable, by very simple means:

o All block-scope variables should be initialized, thereby eliminating half the
problems with uninitialized objects.

e Dynamical allocation should be done with calloc instead of malloc wher-
ever that is suitable. This avoids another quarter of the problems with unini-
tialized objects.

e A specific initialization function should be implemented for more-complicated
data structures that are allocated dynamically. That eliminates the rest of the
problems with uninitialized objects.

e Functions that receive pointers should use array syntax and distinguish dif-
ferent cases:

— A pointer to a single object of the type—These functions should use the
static 1 notation and thus indicate that they expect a non-null pointer:

void func (double a[static 1]);

— A pointer to a collection of objects of known number—These functions should
use the static N notation and thus indicate they expect a pointer that
points to at least that number of elements:
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void func (double a[static 7]);

— A pointerto a collection of objects of unknown number—These functions should
use the VLA notation but still indicate via static that the bound gives
a guarantee about the number of elements that are accessible:

void func(size_t n, double a[static n]);

This might look restrictive at first glance: for this to work, we always have
to declare the size parameter before the array parameters. Section 18.2
shows a trick on how to create macro and inline interfaces to such func-
tions that can work around this requirement for function interfaces that
cannot be changed, such as snprint£.

— A pointer to a single object, an array or a null pointer—Such a function must
guarantee that even when it receives a null pointer, the execution re-
mains in a defined state:

void func (doublex a);

Some compiler builders only just started to implement checks for these cases,
so errors might not (yet) be detected automatically; some compilers are al-
ready quite good, at least if the function call has size expressions that are
integer constant expressions and arrays with a size that is known at compile
time. In any case, writing these down and making them clear will help you
avoid out-of-bounds errors.

e Taking addresses of block-scope (local) variables should be avoided if possi-
ble. Therefore, it is good practice to mark all variables in complex code with
register.

e Use unsigned integer types for loop indices and handle wrap-around explic-
itly. The latter can, for example, be achieved by comparing the loop variable
to the maximum value of the type before the increment operation.

Despite what some urban myths suggest, applying these rules usually will not negatively
affect the performance of your code.

Takeaway 16 #3  Optimizers are clever enough to eliminate unused initializations.

Takeaway 16 #4  The different notations of pointer arguments to functions result in the same
binary code.

Takeaway 16 #5 Not taking addresses of local variables helps the optimizer because it in-
hibits aliasing.

Once we have applied these rules and have ensured that our implementation is safe,
we can look at the performance of the program. What constitutes good performance
and how we measure it are difficult subjects by themselves. A first question concerning
performance should always be relevance: for example, improving the run time of an
interactive program from 1 ms to 0.9 ms usually makes no sense at all, and any effort
spent making such an improvement is probably better invested elsewhere. To equip
us with the necessary tools to assess performance bottlenecks, we will discuss how to
measure performance (subsection 16.4). This discussion comes at the end of this sec-
tion because before we can fully understand measuring performance, we have to better
understand the tools for making performance improvements.
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There are many situations in which we can help our compiler (and future versions of
it) to optimize code better because we can specify certain properties of our code that it
can’t deduce automatically. C introduces features for this purpose that are quite special
in the sense that they constrain not the compiler but the programmer. They all have the
property that removing them from valid code where they are present should not change
the semantics. Because of that property, they are sometimes presented as useless or
even obsolete features. Be careful when you encounter such statements: people who
make such claims tend not to have a deep understanding of C, its memory model,
or its optimization possibilities. And, in particular, they don’t seem to have a deep
understanding of cause and effect.
The features that introduce these optimization opportunities are

register (C89)

inline, restrict (both from C99)

alignas (respectively _Alignas, C11)

[ [unsequenced] ], and [ [reproducible] ] (both from C23)

As indicated, all have the property that they could be omitted from a valid program
without changing its semantics.

In subsection 13.2, we discussed register to some extent, so we will not go
into more detail than that. Just remember that it can help to avoid aliasing between
objects that are defined locally in a function. As stated there, I think this feature is very
underestimated in the C community.

In subsection 12.7, we also discussed C11’s alignas and the related alignof.
They can help position objects on cache boundaries and thus improve memory access.
We will not go into more detail about these specialized features.

The remaining features, C99’s inline (16.1) and restrict (16.2) and C238’s
[ [unsequenced] ], and [ [reproducible]] (16.3), have very different usability.
The first is relatively easy to use and presents no particular danger. It is a tool that
is quite widely used and may ensure that the code for short functions can be directly
integrated and optimized at the caller side of the function.

The second, restrict, relaxes the type-based aliasing considerations to allow for
better optimization. Thus, it is subtle to use and can do considerable harm if used badly.
It is often found in library interfaces but much less often in user code.

For the last two, especially for [ [unsequenced] ], we have already seen a lot of
uses previously that cover the case of pure functions. They are convenient annotations
that tell the compiler that function calls may be moved and combined. But their pos-
sible use goes beyond that simple case of pure functions—namely, they can also model
functions with pointer parameters and returns. The conditions that functions have to
fulfill reuse a lot of the properties introduced with restrict.

The remainder of this section (subsection 16.4) dives into performance measure-
ment and code inspection to enable us to asses performance by itself and the reasons
leading to good or bad performance.

16.1. Inline functions. For C programs, the standard tool to write modular code
is functions. As we have seen, they have several advantages:

e They clearly separate interface and implementation. Thus, they allow us to
improve code incrementally, from revision to revision, or to rewrite func-
tionality from scratch if necessary.

e If we avoid communicating with the rest of the code via global variables, we
ensure that the state a function accesses is local. That way, the state is present
in the parameters of the call and local variables only. Optimization opportu-
nities may thus be detected much more easily.
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Unfortunately, functions also have some downsides from a performance point of view:

e Even on modern platforms, a function call has a certain overhead. Usually,
when calling a function, some stack space is put aside and local variables are
initialized or copied. Control flow jumps to a different point in the executable,
which may or may not be in the execution cache.

e Depending on the calling convention of the platform, if the return value of a
function is a struct, the whole return value may have to be copied where
the caller of the function expects the result.

If, by coincidence, the code of the caller (say, fcaller) and the callee (say, fsmall) is
present inside the same translation unit (TU), a good compiler may avoid these down-
sides by inlining. Here, the compiler does something equivalent to replacing the call
to £small with the code of £small itself. Then there is no call, so there is no call
overhead.

Even better, since the code of £small is now inlined, all instructions of £small
are seen in that new context. The compiler can detect, for example,

e Dead branches that are never executed
e Repeated computation of an expression where the result is already known
e A function (as called) that may only return a certain type of value

Takeaway 16.1 #1  Inlining can open up a lot of optimization opportunities.

A traditional C compiler can only inline functions for which it also knows the defi-
nition; knowing only the declaration is not enough. Therefore, programmers and com-
piler builders have studied the possibilities for increasing inlining by making function
definitions visible. Without additional support from the language, there are two strate-
gies to do so:

e Concatenate all code of a project into a single large file and then compile
all that code in one giant TU. Doing so systematically is not as easy as it
sounds: we have to ensure that the concatenation order of the source files
doesn’t produce definition cycles and that we don’t have naming conflicts (for
example, two TUs, each with a static function init).

e Functions that should be inlined are placed in header files and then included
by all TUs that need them. To avoid the multiple definitions of the function
symbol in each TU, these functions must be declared statiec.

Whereas the first approach is infeasible for large projects, the second approach is rela-
tively easy to implement. Nevertheless, it has drawbacks:

e If the function is too big to be inlined by the compiler, it is instantiated sep-
arately in every TU. That is, a function that big will potentially have a lot of
copies and increase the size of the final executable.

e Taking a pointer of such a function will give the address of the particular
instance in the current TU. Comparison of two such pointers obtained in
different TUs will not compare as equal.

e If such a static function declared in a header file is not used in a TU, the
compiler will usually warn about that nonuse. So, if we have a lot of such
small functions in header files, we will see a lot of warnings, producing a lot
of false alarms.

To avoid these drawbacks, C99 introduced the inline keyword. Unlike what the
naming might suggest, this does not force a function to be inlined; it only provides a
way that it may be:
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e A function definition declared with inline can be used in several TUs with-
out causing a multiple-symbol-definition error.

e All pointers to the same inline function will compare as equal, even if ob-
tained in different TUs.

e An inline function not used in a specific TU will be completely absent from
the binary of that TU and, in particular, will not contribute to its size.

The latter point is generally an advantage, but it has one simple problem: no symbol for
the function would ever be emitted, even for programs that might need such a symbol.
There are several common situations in which a symbol is needed:

e The program directly uses or stores a pointer to the function.
e The compiler decides that the function is too big or too complicated to inline.
This situation varies and depends on several factors:
— The optimization level used for the compilation
— Whether debugging options are on or off
— The use of certain C library function by the function itself
e The function is part of a library that is shipped and linked with unknown
programs.

To provide such a symbol, C99 introduced a special rule for inline functions.

Takeaway 16.1 #2  Adding a compatible declaration without the inline keyword ensures
the emission of the function symbol in the current TU.

As an example, suppose we have an inline function like this in a header file: say
toto.h:

// Inline definition in a header file.
// Function argument names and local variables are visible
// to the preprocessor and must be handled with care.
inline
toto* toto_init (toto* toto_x) {

if (toto_x) {

xtoto_x = (toto){ };
}
return toto_x;

}

Such a function is a perfect candidate for inlining. It is really small, and the initialization
of any variable of type toto is probably best made in place. The call overhead is of
the same order as the inner part of the function, and in many cases, the caller of the
function may even omit the test for the i £.

Takeaway 16.1 #3 An inline function definition is visible in all TUs.

This function may be inlined by the compiler in all TUs that see this code, but none
would effectively emit the symbol toto_init. But we can (and should) enforce the
emission in one TU, toto. ¢, say, by adding a line like

#include "toto.h"

// Instantiate in exactly one TU.
// The parameter name is omitted to avoid macro replacement.
toto* toto_init (totox*);
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Takeaway 16.1 #4 An inline definition goes in a header file.

Takeaway 16.1 #5 An additional declaration without inline goes in exactly one TU.

As we said, that mechanism of inline functions is there to help the compiler
decide whether to really inline a function. In most cases, the heuristics that compiler
builders have implemented to make that decision are completely appropriate, and you
can’t do better. They know the particular platform for which the compilation is done
much better than you; maybe this platform didn’t even exist when you wrote your code.
So they are in a much better position to compare the tradeoffs between the different
possibilities.

An important family of functions that may benefit from inline definitions is pure
Junctions, which we met in subsection 10.2.2. If we look at the example of the rat
structure (listing 10.1), we see that all the functions implicitly copy the function argu-
ments and the return value. If we rewrite all these functions as inline in the header
file, all these copies can be avoided using an optimizing compiler.Fxs 11 Exs 2]

So, inline functions can be a precious tool to build portable code that shows
good performance; we just help the compiler(s) make the appropriate decision. Unfor-
tunately, using inline [unctions also has drawbacks that should be taken into account
for our design.

First, 16.1 #3 implies that any change you make to an inline function will
trigger a complete rebuild of your project and all of its users.

Takeaway 16.1 #6  Only expose functions as inline if you consider them stable.

Second, the global visibility of the function definition also has the effect that lo-
cal identifiers of the function (parameters or local variables) may be subject to macro
expansion for macros we don’t even know about. In the example, we used the toto_
prefix to protect the function parameters from expansion by macros from other include

files.

Takeaway 16.1 #7  All identifiers local to an inline function should be protected by a
convenient naming convention.

Third, other than conventional function definitions, inline functions have no
particular TU with which they are associated. Whereas a conventional function can
access state and functions that are local to the TU (static variables and functions),
for an inline function, it would not be clear which copy of which TU these refer to.

Takeaway 16.1 #8 inline functions can’t access static functions by name.

Takeaway 16.1 #9 inline functions can’t access modifiable static objects by name.

Here, the emphasis is on the fact that access is restricted to the identifiers and not
the objects or functions themselves. There is no problem with passing a pointer to a
static object or a function to an inline function.

But even if there is no identifier, such as for compound literals, defining static
objects is still not permitted.

Takeaway 16.1 #A inline functions can’t define modifiable static objects.

[Exs HRewrite the examples from subsection 10.2.2 with inline.
[Exs 2R evisit the function examples in subsection 7 and argue whether each should or should not be defined
as inline.
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16.2. Using restrict qualifiers. We have seen many examples of C library func-
tions that use the keyword restrict to qualify pointers, and we also have used this
qualification for our own functions. The basic idea of restrict is relatively simple:
it tells the compiler that the pointer in question is the only access to the object it points
to. Thus, the compiler can make the assumption that changes to the object can only
occur through that same pointer, and the object cannot change inadvertently. In other
words, with restrict, we are telling the compiler that the object does not alias any
other object the compiler handles in this part of the code.

Takeaway 16.2 #1 A restrict-qualified pointer has to provide exclusive access.

As is often the case in G, such a declaration places the burden of verifying this
property on the caller.

Takeaway 16.2 #2 A restrict-qualification constrains the caller of a function.

Consider, for example, the differences between memcpy and memmove:

voidx memcpy (voidrrestrict sl, void constxrestrict s2, size_t n);
voidx memmove (voidx sl, const voidx s2, size_t n);

For memcpy, both pointers are restrict-qualified. So, for the execution of this
function, the access through both pointers has to be exclusive; otherwise, the execution
fails. Also, s1 and s2 must have different values, and neither can provide access to parts
of the object of the other. In other words, the two objects that memepy “sees” through
the two pointers must not overlap. Assuming this can help to optimize the function.

In contrast, memmove does not make such an assumption. So, s1 and s2 may be
equal, or the objects may overlap. The function must be able to cope with that situation.
Therefore, it might be less efficient, but it is more general.

We saw in subsection 12.8 that it might be important for the compiler to decide
whether two pointers may, in fact, point to the same object (aliasing). Pointers to dif-
ferent base types are not supposed to alias unless one of them is a character type. So,
both parameters of £puts are declared with restrict:

|
‘int fputs (const char xrestrict s, FILE xrestrict stream);
!

However, it seems very unlikely that anyone would call £puts with the same pointer
value for both parameters.
This specification is more important for functions like print £ and friends:

int printf (const char xrestrict format, ...);
int fprintf (FILE *restrict stream, const char xrestrict format,
S

The format parameter shouldn’t alias any of the arguments that might be passed to
the . . . part. For example, reaching the following code, the execution fails:

char constx format = "format printing itself: %$s\n";
printf (format, format); // Restrict violation

This example will probably still do what you think it does. If you abuse the stream
parameter, your program might explode:

char constx format = "First_two bytes_in stdin_object: %.2s\n";
char const+ bytes = (charx)stdin; // Legal cast to char
fprintf (stdin, format, bytes); // Restrict violation
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Sure, code like this is not very likely to occur in real life. But keep in mind that char-
acter types have special rules concerning aliasing, and therefore all string-processing
functions may be subject to missed optimization. You could add restrict qualifi-
cations in many places where string parameters are involved and that you know are
accessed exclusively through the pointer in question.

16.3. Unsequenced and reproducible attributes. Many of our example functions
use the attribute [ [unsequenced] ] (or the header-safe form [ [__unsequenced__]1])
to indicate a function is pure.

Takeaway 16.3 #1  All pure functions should have the attribute [ [unsequenced] ].

Other than before for restrict, such an annotated pure function can usually be
used freely without restrictions. If the function definition is verified, this knowledge can
be used to optimize the call site much better.

For the first part of this section, we will assume that situation— namely, that the
attributed function is, in fact, pure. Later, we will see how these definitions extend to
functions that have pointer arguments or return values and that may have an internal
state for the [ [reproducible]] attribute.

So here, the burden of verification is on the writer of the function definition. In
general, for the simple case of pure functions, this is not very difficult: we have to ensure
that the function only depends on its arguments and has no other effects other than
returning a value. This splits into several properties that are relatively easy to check.

For the state dependency part, it is formulated as follows.

Takeaway 16.8 #2 A function with the attribute [ [unsequenced] ] shall not read
nonconstant global variables or system state.

Here, the possible danger does not only lie in global variables that are read and
would possibly change under our feet. There are other more subtle parts of the execu-
tion state on which a function may rely that we may not easily notice. A good example
of such an implicit state is the floating point rounding mode. Unfortunately, in some
parts, the C library follows a quite antiquated model for tuning the floating point model:
a thread-local state is modified by the use of pragmas:

#pragma FP_CONTRACT OFF
#pragma FENV_ROUND FE_TONEAREST

Here, for example, this sets the global thread-local state such that no floating-point
expression contractions are performed and the result of rounding always goes to the
nearest representable number. Since this state is accessible by programming interfaces,
users of a function that we think is pure may indeed depend on a state that changes
between different calls.

Ta